

(a) (i) Find the gradient of the line *AB*.

Answer(a)(i) [2]

Answer(a)(ii) y =[2]

(b) The table shows some values of the function $y = x^2 - 2$.

x	-3	-2	-1	0	1	2	3
у	7		-1		-1		7

(i) Complete the table.

[2]

- (ii) On the grid, draw the graph of $y = x^2 2$ for $-3 \le x \le 3$. [4]
- (iii) Use your graph to solve the equation $x^2 2 = 0$.

$$Answer(b)(iii) x =$$
 or $x =$ [2]

(c) Write down the co-ordinates of the points where your graph meets the line AB.

Answer(c)(, ,) and (,) [2]

2 (a) The table shows some values of the function $y = x^2 + x - 3$.

x	-4	-3	-2	-1	0	1	2	3
у	9	3		-3		-1		9

[2]

- (i) Complete the table.
- (ii) On the grid, draw the graph of $y = x^2 + x 3$ for $-4 \le x \le 3$.

(iii) Use your graph to solve the equation

Answer(a)(iii) x = _____ or x =[2]

3 (a) (i) Complete the table for the function $y = \frac{6}{x}$, $x \neq 0$.

x	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
У	-1	-1.2		-2	-3	-6	6	3			1.2	1

[2]

[4]

(b) (i) Complete the table for the function $y = \frac{x^2}{2} - 2$.

y 6 2.5 -2 2.5 6	x	-4	-3	-2	-1	0	1	2	3	4
	у	6	2.5			-2			2.5	6

(ii) On the grid opposite, draw the graph of $y = \frac{x^2}{2} - 2$ for $-4 \le x \le 4$. [4]

(c) Write down the co-ordinates of the point of intersection of the two graphs.

Answer(c)(,)[2]

4	(a)	The table shows some values of	$y = \frac{10}{r}$.
-	~ /		r x

Extend the line to the edges of the grid.

		п	-	-		r		-	r	-		r	1
	x	-8	-5	-4	-2	-1	-	1	2	4	5	8	
	у	-1.25			-5			10			2		
((i)	Complete	e the tabl	e.									[2
(i	ii)	On the gr	id oppos	iite, draw	the gra	ph of y =	= 1	$\frac{0}{c}$ for -8	$S \leq x \leq y$	-1 and 1	$\leq x \leq 8$	8.	[4
) ((i)	On the sa	me grid,	draw the	e straigh	t line thr	ou	gh the po	oints (-3	, -5) and	d (1, 3).		

(ii) Find the co-ordinates of the points of intersection of this line with the graph of $y = \frac{10}{x}$.

Answer(b)(ii) (_____, ____) and (_____, ___) [2]

- (c) For the line in part (b)(i)
 - (i) work out the gradient,

Answer(c)(i) [2]

(ii) write down the equation in the form y = mx + c.

$$Answer(c)(ii) y =$$
[1]

[2]

5 (a) Complete the table of values for $y = x^2 - 2x + 5$.

x	-3	-2	-1	0	1	2	3	4	5
у	20		8				8		20

(b) On the grid, draw the graph of $y = x^2 - 2x + 5$ for $-3 \le x \le 5$.

[3]

(d) (i) On the grid, draw the line y = 12.

(ii) Use your graph to solve the equation $x^2 - 2x + 5 = 12$.

Answer(d)(ii) x = or x = [2]

(e) The equation of a straight line is y = 6 - 3x.

(i) Write down the gradient of this line.

Answer(e)(i) [1]

[1]

(ii) Write down the co-ordinates of the point where this line crosses the *y*-axis.

- Answer(e)(ii) (, ,) [1]
- (iii) Write down the equation of a line parallel to y = 6 3x.

Answer(e)(iii) [1]

6 (a) Complete the table of values for $y = \frac{4}{x}, x \neq 0$.

x	-4	-3	-2	-1	- 0.5	0.5	1	2	3	4	
у		-1.3	-2		-8	8	4	2			
											[

(b) On the grid below, draw the graph of $y = \frac{4}{x}$, for $-4 \le x \le -0.5$ and $0.5 \le x \le 4$.

(c) Complete the following statement.

The point (-2.5,) lies on the graph of
$$y = \frac{4}{x}$$
. [1]

(d) (i) On the grid, draw the line y = 5.

(ii) Use your graphs to solve the equation $\frac{4}{x} = 5$.

$$Answer(d)(ii) x =$$
[1]

[1]

(e) (i) On the grid, draw the straight line joining the points (-0.5, -8) and (2, 2). [2]

(ii) Find the gradient of this line.

Answer(e)(ii) [1]

(iii) Write down the equation of this line in the form y = mx + c.

$$Answer(e)(iii) y =$$
[2]

7 (a) (i) Complete the table for $y = 12 - x^2$.

x	0	1	2	3	4
у	12	11			- 4

[2]

(iii) Use your graph to solve the equation $12 - x^2 = 0$.

Answer (a)(iii) x = [1]

(b) (i) Complete the table for
$$y = \frac{12}{x}$$
, $x \neq 0$.

x	1	2	3	4	5	6	7	8
у	12	6	4		2.4		1.7	

(ii) On the grid opposite, draw the graph of $y = \frac{12}{x}$ for $1 \le x \le 8$. [3]

(c) Write down the co-ordinates of the points of intersection of the two graphs.

[3]

8 (a) The table shows some values for $y = \frac{18}{x}$.

ſ	x	-9	-6	-4	-3	-2	2	3	4	6	9
	У	-2		-4.5		-9			4.5	3	

[2]

(i) Complete the table.

(ii) On the grid, draw the graph of $y = \frac{18}{x}$ for $-9 \le x \le -2$ and $2 \le x \le 9$.

(b) (i) Complete the table of values for y = 2x + 3.

x	-4	-3	2	3
у	-5		7	

- (ii) On the grid, draw the graph of y = 2x + 3 for $-4 \le x \le 3$. [1]
- (iii) Find the co-ordinates of the points of intersection of the graphs of

$$y = \frac{18}{x}$$
 and $y = 2x + 3$.

Answer(b)(iii) (, , ,) and (, ,) [2]

[2]