Vectors Answers

1)

10 (i) $\binom{29}{-13}-\binom{5}{-6}=\binom{24}{-7}$
Magnitude $=25$, unit vector $\frac{1}{25}\binom{24}{-7}$
(ii) $2 \overrightarrow{A C}=3 \overrightarrow{A B}$
or $2 \overrightarrow{A B}+2 \overrightarrow{B C}=3 \overrightarrow{A B}$ leading to $\overrightarrow{A C}=\binom{36}{-10.5}$
$\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}$
or $\overrightarrow{O B}-\overrightarrow{O A}=2 \overrightarrow{O C}-2 \overrightarrow{O B}$
leading to $\overrightarrow{O C}=\binom{41}{-16.5}$
(equivalent methods acceptable)

M1	M1 for subtraction
M1	M1 for attempt to find magnitude of their
A1	vector

M1 for attempt to find $\overrightarrow{A C}$ - may be part of a larger method

M1 for attempt to find $\overrightarrow{O C}$

A1 for each
2)

(i) $\overrightarrow{O M}=\overrightarrow{O P}+\overrightarrow{P M}=p+k \overrightarrow{P Q} \quad[$ or $q+z \overrightarrow{Q P}] \quad=z p+1 / q$

MI $\overrightarrow{O X}=m(3 / 2 p+1 / s q)$
(ii) $\overrightarrow{P N}=\overrightarrow{O N}+\overrightarrow{P O}=2 / 5 q-p \quad \Rightarrow \quad \overrightarrow{P X}=n(2 / 5 q-p)$

M1 A1
$\overrightarrow{O X}=p+n(2 / 5 q-p)$
(iii) Solve $\begin{aligned} 1-n & =3 / 8 m \\ 2 / 5 n & =1 / 2 m\end{aligned} \quad \Rightarrow \quad \begin{aligned} & n=5 / 9 \\ & m=2 / 3\end{aligned}$

A1/
M1 A1

Vectors Answers

3)

4 (i) Modulus of $(3 i-4 j)$ or $(4 i+3 j)=5$	B1	Anywhere.
$\overrightarrow{O P}=(3 i-4 j) \times(10+5) \quad=6 i-8 j$	M1	Muit. by 10 (or 15) + modulus - once.
$\overrightarrow{O Q}=(4 i+3 j) \times(15+5) \quad=12 i+9 j$	A1 [3]	Both correct.
(ii) $\overrightarrow{P Q}=12 \mathrm{i}+9 \mathrm{j}-(6 \mathrm{i}-8 \mathrm{j})=6 \mathrm{i}+17 \mathrm{j}$	M1	q-p or p-q
Magnitude $=\sqrt{ }\left(6^{2}+17^{2}\right)=\sqrt{325}=5 \sqrt{ } 13$	M1	Allow if $p+q$ used.
$\lambda=5$	A1	Allow if p-q used.

4)

(i) $\quad \mathbf{a}=\frac{1}{13}(5 \mathbf{i}-12 \mathbf{j})$
(ii) $q(5 \mathbf{i}-12 \mathbf{j})+p \mathbf{i}+\mathbf{j}=19 \mathbf{i}-23 \mathbf{j}$ $5 q+p=19$ $-12 q+1=-23$ Leading to $q=2, p=9$
[2]

M1
M1
A1
[3]

M1 for a valid attempt to obtain magnitude.

M1 for equating like vectors
M1 for solution of (simultaneous) equations
5)
(i) $\sqrt{7^{2}+24^{2}} \quad$ M1
$|O A|=25$
A1
(ii) $\overrightarrow{A B}=\binom{3}{-4}$
$|A B|=5$
B1

B1
(iii) $\overrightarrow{A C}=5 \overrightarrow{A B}=\binom{15}{-20}$

M1
$\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}$ M1
$\binom{22}{4}$ A1

Vectors Answers

6)

(i) $\overrightarrow{O P}=\frac{3}{5} \mathbf{a}+\frac{2}{5} \mathbf{b}$ oe

M1 A1

$$
\overrightarrow{O X}=\mu\left(\frac{3}{5} \mathbf{a}+\frac{2}{5} \mathbf{b}\right)
$$

7)

(i) $\overrightarrow{A Q}=3 b-a$
$\overrightarrow{O X}=\overrightarrow{O A}+\mu \overrightarrow{A Q}$
$a+\mu(3 b-a)$
(ii) $\overrightarrow{B P}=2 a-b$
$\overrightarrow{O X}=\overrightarrow{O B}+\lambda \overrightarrow{B P}$
$b+\lambda(2 a-b)$
(iii) Equate vectors and solve $\binom{1-\mu=2 \lambda}{3 \mu=1-\lambda}$

$$
\begin{aligned}
& \mu=0.2 \\
& \lambda=0.4
\end{aligned}
$$

8)

(i) $\overrightarrow{O X}=\mathbf{a}+\mu(\mathbf{b}-\mathbf{a})$ or $(1-\mu) \mathbf{a}+\mu \mathbf{b}$
(ii) $\overrightarrow{O S}=\frac{3}{5} \mathbf{a}$
$\overrightarrow{O T}=\frac{7}{5} \mathbf{b}$
B1
$\overrightarrow{O X}=\frac{3}{5} \mathbf{a}+\lambda\left(\frac{7}{5} \mathbf{b}-\frac{3}{5} \mathbf{a}\right)$ or $\overrightarrow{O X}=(1-\lambda) \frac{3}{5} \mathbf{a}+\lambda \frac{7}{5} \mathbf{b}$
iiii) Equate components or arrange to $(\alpha) \mathbf{a}=(\beta) \mathbf{b}$ and put $\alpha=\beta=0$
Solve simultaneous equations
$\lambda=\frac{1}{2}$
$\mu=\frac{7}{10}$

Vectors Answers

9)

(i) $\overrightarrow{O P}=3$ c

$$
\begin{aligned}
& \overrightarrow{O Q}=\frac{3}{2} \mathbf{d} \\
& \overrightarrow{D R}=\overrightarrow{C D}=\mathbf{d}-\mathbf{c} \\
& \overrightarrow{O R}=\overrightarrow{O D}+\overrightarrow{D R}=2 \mathbf{d}-\mathbf{c}
\end{aligned}
$$

(ii) Finds two of $\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{P R}$

Two of $\overrightarrow{P Q}=\frac{3}{2} \mathbf{d}-3 \mathbf{c}, \overrightarrow{Q R}=\frac{1}{2} \mathbf{d}-\mathbf{c}, \overrightarrow{P R}=2 \mathbf{d}-4 \mathbf{c}$
Express one vector as multiple of another

