Vectors and Velocity Answers

1)

(i) \quad speed of travel $=4.8$ or distance downstream $=14 \quad$ B1

1.4
draw right angle triangle with 1.4 and (4.8) at 90° B1 $\sqrt{1.4^{2}+(4.8)^{2}}$ M1 5
(ii) $\tan ^{-1} \frac{(4.8)}{1.4}$ oe
73.7 or 1.29 radians

M1
A1
2)

9 (i)

$V^{2}=50^{2}+350^{2}-2 \times 50 \times 350 \cos 130$
$V=384$
$T=\frac{480}{V}$
1.25 hours
(ii) $\frac{\sin \alpha}{350}=\frac{\sin 130}{V}$ or $\frac{\sin \beta}{50}=\frac{\sin 130}{V}$
$\alpha=44.3$ or $\beta=5.72$
135.7 or 136

OR

(i) Diagram
$X=350 \sin 50(=268)$
$Y=50+350 \cos 50(=275)$
$V^{2}=X^{2}+Y^{2}$
Finds components and uses Pythagoras
$V=384$
$T=\frac{480}{V}$
75 mins or 1.25 hours
(ii) $\tan \alpha=\frac{Y}{X}$
$\alpha=44.3$
135.7 or 136

Vectors and Velocity Answers

3) $\quad 9$ (i) Either

10 or 45 found
Uses cosine rule
$D^{2}=10^{2}+30^{2}-2 \times 10 \times 30 \times \cos 60$
or $V^{2}=15^{2}+45^{2}-2 \times 15 \times 45 \times \cos 60$
39.7 or 39.8 or $15 \sqrt{7}$
(ii) $\frac{\sin \alpha}{10 / 15}=\frac{\sin 60}{D / V}$ (or $\frac{\sin \beta}{30}=\frac{\sin 60}{D}$ and use β)
$\alpha=19.1$ or $\beta=101$
251
9 (i)
Or

10
B1
$D \sin \alpha=10 \sin 60$ and $D \cos \alpha=25$
or $V \sin \alpha=15 \sin 60$ and $V \cos \alpha=37.5$
Solve equations
$V=39.7$ or 39.8
(ii)
$\tan \alpha=\frac{10 \sin 60}{25}$
$\alpha=19.1$
251
4)
(i) $\overrightarrow{O P}=\binom{20}{24}$

B1
$\overrightarrow{P L}=\binom{7}{24}$ or $\overrightarrow{L P}=\binom{-7}{-24}$
B1
$\sqrt{7^{2}+24^{2}}=25$
M1A1
$\overrightarrow{P L}=\binom{23-8 t}{36-6 t}$ oe
(ii) $(23-8 t)^{2}+(36-6 t)^{2}=25^{2}$

Solve 3 term quadratic $\left[100\left(t^{2}-8 t+12\right)=0\right]$
$6-2=4$ hours

Vectors and Velocity Answers

5)

$9 \quad$ (i) $10 \sqrt{2}\left(\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}\right)=10 \mathbf{i}+10 \mathbf{j}$
(ii)
$(-4 \mathbf{i}+8 \mathbf{j})+(20 \mathbf{i}+20 \mathbf{j})=16 \mathbf{i}+28 \mathbf{j}$
(iii) $(10 \mathbf{i}+10 \mathbf{j})-(8 \mathbf{i}+6 \mathbf{j})=2 \mathbf{i}+4 \mathbf{j}$
(iv) displacement of $(19 \mathbf{i}+34 \mathbf{j})-(16 \mathbf{i}+28 \mathbf{j})=3 \mathbf{i}+6 \mathbf{j}$
time $=1330$ hours
(accept 1.5 hours)
at $31 \mathbf{i}+43 \mathbf{j}$
Alternative scheme:

$$
\begin{aligned}
& (19 \mathbf{i}+34 \mathbf{j})+(8 \mathbf{i}+6 \mathbf{j}) t= \\
& (16 \mathbf{i}+28 \mathbf{j})+(10 \mathbf{i}+10 \mathbf{j}) t
\end{aligned}
$$

or equivalent
6)
(i) $10 \sin 60$ or $10 \cos 30$ or $5 \tan 60$ or $\sqrt{10^{2}-5^{2}}$ $5 \sqrt{3}$ or 8.66
(ii) $\left(\frac{16-5 t}{12+8.66 t}\right)$ o.e.
(iii) Equate x component to 0 1512 (when $t=3.2$)
(iv) Substitute t into y component 39.7 km

M1 for attempt at a correct direction vector A1 all correct
[2]
M1 for valid attempt
A1 all correct
[2]
M1
A1

M1
A1

A1
[3]
M1 for attempt at vector difference
A1 condone negative
[2]
M1 for displacement and attempt to obtain time
A1 for correct time
A1 for correct position vector

M1 for attempt to equate like vectors A marks as above

Vectors and Velocity Answers

7)

EITHER

(i) velocity $=12 \mathbf{i}+16 \mathbf{j}$
position $=(54 \mathbf{i}+16 \mathbf{j})+(36 \mathbf{i}+48 \mathbf{j})$
$=90 \mathbf{i}+64 \mathbf{j} \quad$ ANSWER GIVEN
(ii) $(54 \mathbf{i}+16 \mathbf{j})+(12 t \mathbf{i}+16 t \mathbf{j})$
(iii) At 16 00, ship has 'travelled' $(102 \mathbf{i}+80 \mathbf{j})$
boat needs to do this in 2 hours so velocity of boat $(51 \mathbf{i}+40 \mathbf{j})$
speed $\sqrt{51^{2}+40^{2}}$
$=64.8$
(iv) $(51 \mathbf{i}+40 \mathbf{j})-(12 \mathbf{i}+16 \mathbf{j})$
$=39 \mathbf{i}+24 \mathbf{j}$
(v) $\tan \alpha=\frac{51}{40}$
angle $=51.9$
8)
(i)

$$
\frac{\sin \alpha}{80}=\frac{\sin 40}{420}
$$

$\alpha=7.03$ or 7
Bearing 223 (230 $-\alpha$)
(ii)
$\frac{v}{\sin \text { their } 133}=\frac{420}{\sin 40}$
$v=478$
Use time $\frac{1000}{v}$
2.09 hours or 2 hours 5minutes

B1 Correct triangle

Use of sine or cosine rule in any triangle with some of 80,420 , their v and an angle.
A1
A1^
[4]

M1 Use of sine or cosine rule in any triangle with 80 or 420 or both.

A1
M1 v calculated from a triangle
A1 Units required
[4]
9)

$\frac{320}{\sin 120^{\circ}}=\frac{80}{\sin \alpha}$
$\alpha=12.5^{\circ}$ (or $\beta=47.5^{\circ}$)
Bearing $=042.5^{\circ}$ or 043°
(ii) $\frac{v_{r}}{\sin 47.5^{\circ}}=\frac{320}{\sin 120^{\circ}}, v_{r}=272.4$
or $\frac{x}{\sin 120^{\circ}}=\frac{450}{\sin 47.5^{\circ}}$
Time $=\frac{450}{272.4}$ or $\frac{528.6}{320}$
$=1.65$

B1 for correct triangle Could be implied by subsequent working.

M1 for complete method (sine rule and/or cosine rule) to find α or β

A1 for α (or β)
A1 for bearing

M1 for use of complete method (sine rule and/or cosine rule) to find v_{r}
or x
For either $v=272$ or $x=529$

DM1 for $\frac{450}{\text { their velocity }}$
or their $\frac{x}{320}$

