Vectors 2

The line L passes through A(0, 3) and B(1, 0). The origin is at O. The point R(x, 3-3x) 1) is on L, and (OR) is perpendicular to L. Write down the vectors \overrightarrow{AB} and \overrightarrow{OR} . (a) (b) Use the scalar product to find the coordinates of R. 2) Consider the vectors $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} + \mathbf{j} - p\mathbf{k}$. Given that \mathbf{u} is perpendicular to \mathbf{v} find the value of p. (a) Given that $q|\mathbf{u}|=14$, find the value of q. (b) 3) A particle is moving with a constant velocity along line L. Its initial position is A(6, -2, 10). After one second the particle has moved to B(9, -6, 15). Find the velocity vector, AB. (a) (i) (ii) Find the speed of the particle. [4 marks] (b) Write down an equation of the line L. [2 marks] 4) Consider the points A(1, 5, 4), B(3, 1, 2) and D(3, k, 2), with (AD) perpendicular to (AB). Find (a) AB; (i) \overrightarrow{AD} , giving your answer in terms of k. [3 marks] Show that k = 7. [3 marks] (b) The point C is such that $\overrightarrow{BC} = \frac{1}{2} \overrightarrow{AD}$. Find the position vector of C. [4 marks] (c)

[3 marks]

Find cos ABC.

(d)

5) The vertices of the triangle PQR are defined by the position vectors

$$\overrightarrow{OP} = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}, \overrightarrow{OQ} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \text{ and } \overrightarrow{OR} = \begin{pmatrix} 6 \\ -1 \\ 5 \end{pmatrix}.$$

- (a) Find
 - $(i) \quad \stackrel{\rightarrow}{PQ};$
 - (ii) \overrightarrow{PR} . [3 marks]
- (b) Show that $\cos R\hat{P}Q = \frac{1}{2}$. [7 marks]
- (c) (i) Find sin RPQ.
 - (ii) Hence, find the area of triangle PQR, giving your answer in the form $a\sqrt{3}$. [6 marks]