Vectors

1)

Relative to an origin O, points A and B have position vectors $\binom{5}{-6}$ and $\binom{29}{-13}$ respectively.
(i) Find a unit vector parallel to $\overrightarrow{A B}$.

The points A, B and C lie on a straight line such that $2 \overrightarrow{A C}=3 \overrightarrow{A B}$.
(ii) Find the position vector of the point C.
2)

In the diagram $\overrightarrow{O P}=\mathbf{p}, \overrightarrow{O Q}=\mathbf{q}, P \vec{M}=\frac{1}{3} \overrightarrow{P Q}$ and $\overrightarrow{O N}=\frac{2}{5} O \overrightarrow{O Q}$.
(i) Given that $\overrightarrow{O X}=m O \vec{M}$, express $\overrightarrow{O X}$ in terms of m, \mathbf{p} and \mathbf{q}.
(ii) Given that $\overrightarrow{P X}=n \overrightarrow{P N}$, express $\overrightarrow{O X}$ in terms of n, \mathbf{p} and \mathbf{q}.
(iii) Hence evaluate m and n.
3) The vector $\overrightarrow{O P}$ has a magnitude of 10 units and is parallel to the vector $3 \mathbf{i}-4 \mathbf{j}$. The vector $\overrightarrow{O Q}$ has a magnitude of 15 units and is parallel to the vector $4 \mathbf{i}+3 \mathbf{j}$.
(i) Express $\overrightarrow{O P}$ and $\overrightarrow{O Q}$ in terms of \mathbf{i} and \mathbf{j}.
(ii) Given that the magnitude of $\overrightarrow{P Q}$ is $\lambda \sqrt{13}$, find the value of λ.
4) Given that $\mathbf{a}=5 \mathbf{i}-12 \mathbf{j}$ and that $\mathbf{b}=p \mathbf{i}+\mathbf{j}$, find
(i) the unit vector in the direction of \mathbf{a},
(ii) the values of the constants p and q such that $q \mathbf{a}+\mathbf{b}=19 \mathbf{i}-23 \mathbf{j}$.

Vectors

5) Relative to an origin O, the position vectors of points A and B are $\binom{7}{24}$ and $\binom{10}{20}$ respectively. Find
(i) the length of $\overrightarrow{O A}$,
(ii) the length of $\overrightarrow{A B}$.

Given that $A B C$ is a straight line and that the length of $\overrightarrow{A C}$ is equal to the length of $\overrightarrow{O A}$, find
(iii) the position vector of the point C.
6)

In the diagram $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{A P}=\frac{2}{5} \overrightarrow{A B}$.
(i) Given that $\overrightarrow{O X}=\mu \overrightarrow{O P}$, where μ is a constant, express $\overrightarrow{O X}$ in terms of μ, a and \mathbf{b}.
(ii) Given also that $\overrightarrow{A X}=\lambda \overrightarrow{O B}$, where λ is a constant, use a vector method to find the value of μ and of λ.

In the diagram $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \overrightarrow{O P}=2 \mathbf{a}$ and $\overrightarrow{O Q}=3 \mathbf{b}$.
(i) Given that $\overrightarrow{A X}=\mu \overrightarrow{A Q}$, express $\overrightarrow{O X}$ in terms of μ, a and \mathbf{b}.
(ii) Given that $\overrightarrow{B X}=\lambda \overrightarrow{B P}$, express $\overrightarrow{O X}$ in terms of λ, a and \mathbf{b}.
(iii) Hence find the value of μ and of λ.

Vectors

8)

In the diagram above $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \overrightarrow{O S}=\frac{3}{5} \overrightarrow{O A}$ and $\overrightarrow{O T}=\frac{7}{5} \overrightarrow{O B}$.
(i) Given that $\overrightarrow{A X}=\mu \overrightarrow{A B}$, where μ is a constant, express $\overrightarrow{O X}$ in terms of μ, a and \mathbf{b}.
(ii) Given that $\overrightarrow{S X}=\lambda \overrightarrow{S T}$, where λ is a constant, express $\overrightarrow{O X}$ in terms of λ, a and \mathbf{b}.
(iii) Hence evaluate μ and λ.
9)

In the diagram above $\overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{O D}=\mathbf{d}$. The points P and Q lie on $O C$ and $O D$ produced respectively, so that $O C: C P=1: 2$ and $O D: D Q=2: 1$. The line $C D$ is extended to R so that $C D=D R$.
(i) Find, in terms of \mathbf{c} and/or d, the vectors $\overrightarrow{O P}, \overrightarrow{O Q}$ and $\overrightarrow{O R}$.
(ii) Show that the points P, Q and R are collinear and find the ratio $P Q: Q R$.

