Vectors

Relative to an origin *O*, points *A* and *B* have position vectors $\begin{pmatrix} 5 \\ -6 \end{pmatrix}$ and $\begin{pmatrix} 29 \\ -13 \end{pmatrix}$ respectively.

(i) Find a unit vector parallel to \overrightarrow{AB} .

The points A, B and C lie on a straight line such that $2\overrightarrow{AC} = 3\overrightarrow{AB}$.

(ii) Find the position vector of the point C.

In the diagram $\overrightarrow{OP} = \mathbf{p}$, $\overrightarrow{OQ} = \mathbf{q}$, $\overrightarrow{PM} = \frac{1}{3}\overrightarrow{PQ}$ and $\overrightarrow{ON} = \frac{2}{5}\overrightarrow{OQ}$.

- (i) Given that $\overrightarrow{OX} = m\overrightarrow{OM}$, express \overrightarrow{OX} in terms of *m*, **p** and **q**. [2]
- (ii) Given that $\overrightarrow{PX} = n\overrightarrow{PN}$, express \overrightarrow{OX} in terms of *n*, **p** and **q**. [3]
- (iii) Hence evaluate *m* and *n*. [2]

3) The vector \overrightarrow{OP} has a magnitude of 10 units and is parallel to the vector $3\mathbf{i} - 4\mathbf{j}$. The vector \overrightarrow{OQ} has a magnitude of 15 units and is parallel to the vector $4\mathbf{i} + 3\mathbf{j}$.

- (i) Express \overrightarrow{OP} and \overrightarrow{OQ} in terms of i and j. [3]
- (ii) Given that the magnitude of \overrightarrow{PQ} is $\lambda\sqrt{13}$, find the value of λ . [3]

4) Given that $\mathbf{a} = 5\mathbf{i} - 12\mathbf{j}$ and that $\mathbf{b} = p\mathbf{i} + \mathbf{j}$, find

- (i) the unit vector in the direction of **a**, [2]
- (ii) the values of the constants p and q such that $q\mathbf{a} + \mathbf{b} = 19\mathbf{i} 23\mathbf{j}$. [3]

2)

[4]

[3]

Vectors

Relative to an origin *O*, the position vectors of points *A* and *B* are $\begin{pmatrix} 7 \\ 24 \end{pmatrix}$ and $\begin{pmatrix} 10 \\ 20 \end{pmatrix}$ respectively. Find

- (i) the length of \overrightarrow{OA} , [2]
- (ii) the length of \overrightarrow{AB} .

Given that ABC is a straight line and that the length of \overrightarrow{AC} is equal to the length of \overrightarrow{OA} , find

(iii) the position vector of the point C.

5)

In the diagram $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{AP} = \frac{2}{5} \overrightarrow{AB}$.

- (i) Given that $\overrightarrow{OX} = \mu \overrightarrow{OP}$, where μ is a constant, express \overrightarrow{OX} in terms of μ , **a** and **b**. [3]
- (ii) Given also that $\overrightarrow{AX} = \lambda \overrightarrow{OB}$, where λ is a constant, use a vector method to find the value of μ and of λ . [5]

7)

In the diagram $\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}, \overrightarrow{OP} = 2\mathbf{a}$ and $\overrightarrow{OQ} = 3\mathbf{b}$.

- (i) Given that $\overrightarrow{AX} = \mu \overrightarrow{AQ}$, express \overrightarrow{OX} in terms of μ , **a** and **b**. [3]
- (ii) Given that $\overrightarrow{BX} = \lambda \overrightarrow{BP}$, express \overrightarrow{OX} in terms of λ , **a** and **b**. [3]
- (iii) Hence find the value of μ and of λ .

[3]

[2]

[3]

In the diagram above $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OS} = \frac{3}{5}$ \overrightarrow{OA} and $\overrightarrow{OT} = \frac{7}{5} \overrightarrow{OB}$.

- (i) Given that $\overrightarrow{AX} = \mu \overrightarrow{AB}$, where μ is a constant, express \overrightarrow{OX} in terms of μ , **a** and **b**. [2]
- (ii) Given that $\overrightarrow{SX} = \lambda \overrightarrow{ST}$, where λ is a constant, express \overrightarrow{OX} in terms of λ , **a** and **b**. [4]

[4]

(iii) Hence evaluate μ and λ .

In the diagram above $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$. The points *P* and *Q* lie on *OC* and *OD* produced respectively, so that OC : CP = 1 : 2 and OD : DQ = 2 : 1. The line *CD* is extended to *R* so that CD = DR.

- (i) Find, in terms of **c** and/or **d**, the vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} . [5]
- (ii) Show that the points P, Q and R are collinear and find the ratio PQ : QR. [5]

9)