1) [Maximum mark: 15]

Points A, B, and C have position vectors 4i+2j, i-3j and -5i-5j. Let D be a point on the x-axis such that ABCD forms a parallelogram.

- (a) (i) Find \overrightarrow{BC} .
 - (ii) Find the position vector of D. [4 marks]
- (b) Find the angle between \vec{BD} and \vec{AC} . [6 marks]

The line L_1 passes through A and is parallel to i + 4j. The line L_2 passes through B and is parallel to 2i + 7j. A vector equation of L_1 is r = (4i + 2j) + s(i + 4j).

- (c) Write down a vector equation of L_2 in the form $\mathbf{r} = \mathbf{b} + t\mathbf{q}$. [1 mark]
- (d) The lines L_1 and L_2 intersect at the point P. Find the position vector of P. [4 marks]
- 2) The position vector of point A is 2i+3j+k and the position vector of point B is 4i-5j+21k.
 - (a) (i) Show that $\overrightarrow{AB} = 2i 8j + 20k$.
 - (ii) Find the unit vector \boldsymbol{u} in the direction of \overrightarrow{AB} .
 - (iii) Show that \boldsymbol{u} is perpendicular to \vec{OA} . [6 marks]

Let S be the midpoint of [AB]. The line L_1 passes through S and is parallel to \overrightarrow{OA} .

- (b) (i) Find the position vector of S.
 - (ii) Write down the equation of L_1 . [4 marks]

The line L_2 has equation $\mathbf{r} = (5\mathbf{i} + 10\mathbf{j} + 10\mathbf{k}) + s(-2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k})$.

- (c) Explain why L_1 and L_2 are not parallel. [2 marks]
- (d) The lines L_1 and L_2 intersect at the point P. Find the position vector of P. [7 marks]

- 3) Points P and Q have position vectors -5i+11j-8k and -4i+9j-5k respectively, and both lie on a line L_1 .
 - (a) (i) Find \overrightarrow{PQ} .
 - (ii) Hence show that the equation of L_1 can be written as

$$r = (-5+s)i + (11-2s)j + (-8+3s)k$$
. [4 marks]

The point $R(2, y_1, z_1)$ also lies on L_1 .

(b) Find the value of y_1 and of z_1 . [4 marks]

The line L_2 has equation $\mathbf{r} = 2\mathbf{i} + 9\mathbf{j} + 13\mathbf{k} + t(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.

- (c) The lines L_1 and L_2 intersect at a point T. Find the position vector of T. [7 marks]
- (d) Calculate the angle between the lines L_1 and L_2 . [7 marks]