Vectors 3 calculator

1) [Maximum mark: 15]

Points A, B, and C have position vectors $4 \boldsymbol{i}+2 \boldsymbol{j}, \boldsymbol{i}-3 \boldsymbol{j}$ and $-5 \boldsymbol{i}-5 \boldsymbol{j}$. Let D be a point on the x-axis such that ABCD forms a parallelogram.
(a) (i) Find $\overrightarrow{\mathrm{BC}}$.
(ii) Find the position vector of D .
(b) Find the angle between $\overrightarrow{\mathrm{BD}}$ and $\overrightarrow{\mathrm{AC}}$.

The line L_{1} passes through A and is parallel to $\boldsymbol{i}+4 \boldsymbol{j}$. The line L_{2} passes through B and is parallel to $2 \boldsymbol{i}+7 \boldsymbol{j}$. A vector equation of L_{1} is $\boldsymbol{r}=(4 \boldsymbol{i}+2 \boldsymbol{j})+s(\boldsymbol{i}+4 \boldsymbol{j})$.
(c) Write down a vector equation of L_{2} in the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{q}$.
(d) The lines L_{1} and L_{2} intersect at the point P . Find the position vector of P .
2) The position vector of point A is $2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k}$ and the position vector of point B is $4 \boldsymbol{i}-5 \boldsymbol{j}+21 \boldsymbol{k}$.
(a) (i) Show that $\overrightarrow{\mathrm{AB}}=2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k}$.
(ii) Find the unit vector \boldsymbol{u} in the direction of $\overrightarrow{\mathrm{AB}}$.
(iii) Show that \boldsymbol{u} is perpendicular to $\overrightarrow{\mathrm{OA}}$.

Let S be the midpoint of $[\mathrm{AB}]$. The line L_{1} passes through S and is parallel to $\overrightarrow{\mathrm{OA}}$.
(b) (i) Find the position vector of S.
(ii) Write down the equation of L_{1}.

The line L_{2} has equation $\boldsymbol{r}=(5 \boldsymbol{i}+10 \boldsymbol{j}+10 \boldsymbol{k})+s(-2 \boldsymbol{i}+5 \boldsymbol{j}-3 \boldsymbol{k})$.
(c) Explain why L_{1} and L_{2} are not parallel.
(d) The lines L_{1} and L_{2} intersect at the point P . Find the position vector of P .

Vectors 3 calculator

3) Points P and Q have position vectors $-5 \boldsymbol{i}+11 \boldsymbol{j}-8 \boldsymbol{k}$ and $-4 \boldsymbol{i}+9 \boldsymbol{j}-5 \boldsymbol{k}$ respectively, and both lie on a line L_{1}.
(a) (i) Find $\overrightarrow{\mathrm{PQ}}$.
(ii) Hence show that the equation of L_{1} can be written as

$$
\boldsymbol{r}=(-5+s) \boldsymbol{i}+(11-2 s) \boldsymbol{j}+(-8+3 s) \boldsymbol{k} .
$$

The point $\mathrm{R}\left(2, y_{1}, z_{1}\right)$ also lies on L_{1}.
(b) Find the value of y_{1} and of z_{1}.

The line L_{2} has equation $\boldsymbol{r}=2 \boldsymbol{i}+9 \boldsymbol{j}+13 \boldsymbol{k}+t(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})$.
(c) The lines L_{1} and L_{2} intersect at a point T. Find the position vector of T.
(d) Calculate the angle between the lines L_{1} and L_{2}.

