Vectors 3 Answers

1)

(a) (i) $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}$

$$
=-6 \boldsymbol{i}-2 \boldsymbol{j}
$$

(A1)(A1)
(N2)
(ii) $\quad \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{BC}}$

$$
=-2 \boldsymbol{i}+0 \boldsymbol{j}(=-2 \boldsymbol{i})
$$

(N2)
(b) $\quad \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OB}}$

$$
\begin{equation*}
=-3 \boldsymbol{i}+3 \boldsymbol{j} \tag{A1}
\end{equation*}
$$

$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}$

$$
\begin{equation*}
=-9 \boldsymbol{i}-7 \boldsymbol{j} \tag{A1}
\end{equation*}
$$

Let θ be the angle between $\overrightarrow{\mathrm{BD}}$ and $\overrightarrow{\mathrm{AC}}$
$\cos \theta=\left(\frac{(-3 \boldsymbol{i}+3 \boldsymbol{j}) \cdot(-9 \boldsymbol{i}-7 \boldsymbol{j})}{|(-3 \boldsymbol{i}+3 \boldsymbol{j}) \|-9 \boldsymbol{i}-7 \boldsymbol{j}|}\right)$
numerator $=+27-21(=6)$
denominator $=\sqrt{18} \sqrt{130}(=\sqrt{2340})$
therefore, $\cos \theta=\frac{6}{\sqrt{2340}}$
$\theta=82.9^{\circ}(=1.45 \mathrm{rad})$
(A1)
(N3)
[6 marks]
(c) $\quad \boldsymbol{r}=\boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{t}(2 \boldsymbol{i}+7 \boldsymbol{j}) \quad(=(1+2 t) \boldsymbol{i}+(-3+7 \boldsymbol{t}) \boldsymbol{j})$
(A1)
(N1)
[1 mark]
(d) EITHER
$\left.\begin{array}{c}4 \boldsymbol{i}+2 \boldsymbol{j}+s(\boldsymbol{i}+4 \boldsymbol{j})=\boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{t}(2 \boldsymbol{i}+7 \boldsymbol{j}) \quad \text { (may be implied) } \\ 4+s=1+2 t \\ 2+4 s=-3+7 t\end{array}\right\}$
$t=7$ and/or $s=11$

OR
$7 x-2 y=13$ or equivalent (A1)
$4 x-y=14$ or equivalent (A1)
$x=15, y=46$
Position vector of P is $15 \boldsymbol{i}+46 \boldsymbol{j}$

Vectors 3 Answers

2)

(a)
(i) Evidence of subtracting all three components in the correct order

M1

$$
\text { e.g. } \begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=(4 \boldsymbol{i}-5 \boldsymbol{j}+21 \boldsymbol{k})-(2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k}) \\
& =2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k}
\end{aligned}
$$

$\boldsymbol{A} \boldsymbol{G}$
(ii) $\quad|\overrightarrow{\mathrm{AB}}|=\sqrt{2^{2}+(-8)^{2}+20^{2}} \quad(=\sqrt{468}=6 \sqrt{13}=2 \sqrt{117}=21.6)$

$$
\boldsymbol{u}=\frac{1}{\sqrt{468}}(2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k})
$$

A1
$\left(=\frac{2}{\sqrt{468}} \boldsymbol{i}-\frac{8}{\sqrt{468}} \boldsymbol{j}+\frac{20}{\sqrt{468}} \boldsymbol{k}, 0.0925 \boldsymbol{i}-0370 \boldsymbol{j}+0.925 \boldsymbol{k}\right.$, etc. $)$
(A1)

N2
(iii) If the scalar product is zero, the vectors are perpendicular.

R1
Note: Award R1 for stating the relationship between the scalar product and perpendicularity, seen anywhere in the solution.
Finding an appropriate scalar product $(u \cdot \overrightarrow{\mathrm{OA}}$, or $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OA}}) \quad \boldsymbol{M 1}$
e.g. $u \cdot \overrightarrow{\mathrm{OA}}=\left(\frac{2}{\sqrt{468}}\right) \times 2+\left(\frac{-8}{\sqrt{468}}\right) \times 3+\left(\frac{20}{\sqrt{468}}\right) \times 1 \quad\left(=\frac{4-24+20}{\sqrt{468}}\right)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OA}}=2 \times 2+(-8) \times 3+20 \times 1 \\
& \overrightarrow{\boldsymbol{u} \cdot \overrightarrow{\mathrm{OA}}}=0 \text { or } \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OA}}=0
\end{aligned}
$$

(b) (i) EITHER

$$
\mathrm{S}\left(\frac{2+4}{2}, \frac{3-5}{2}, \frac{1+21}{2}\right)
$$

(M1)(A1)
Therefore, $\overrightarrow{\mathrm{OS}}=3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k}(\operatorname{accept}(3,-1,11))$ A1

OR

$$
\begin{aligned}
\overrightarrow{\mathrm{OS}} & =\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}} \\
& =(2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})+\frac{1}{2}(2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k}) \\
\overrightarrow{\mathrm{OS}} & =3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k}
\end{aligned}
$$

(ii) $L_{1}: \boldsymbol{r}=(3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k})+t(2 \boldsymbol{i}+3 \boldsymbol{j}+1 \boldsymbol{k}) \quad \boldsymbol{A 1}$

$$
A 1
$$

Vectors 3 Answers

(c) Using direction vectors (e.g. $2 \boldsymbol{i}+3 \boldsymbol{j}+1 \boldsymbol{k}$ and $-2 \boldsymbol{i}+5 \boldsymbol{j}-3 \boldsymbol{k})$
(M1)
Valid explanation of why L_{1} is not parallel to $L_{2} \quad \boldsymbol{R 1}$
e.g. Direction vectors are not scalar multiples of each other.

Angle between the direction vectors is not zero or 180.
Finding the angle

$$
d_{1} \cdot d_{2} \neq\left|d_{1}\right|\left|d_{2}\right| .
$$

Note: Award R0 for "direction vectors are not equal".
(d) Setting up any two of the three equations

For each correct equation
e.g. $3+2 t=5-2 s,-1+3 t=10+5 s, 11+t=10-3 s$

Attempt to solve these equations (M1)
Finding one correct parameter ($s=-1, t=2$) (A1)

P has position vector $7 \boldsymbol{i}+5 \boldsymbol{j}+13 \boldsymbol{k}$ A2

Note: Award (M1)A2 if the same parameter is used for both lines in the initial correct equations. Award no further marks.

Vectors 3 Answers

3)

(a) (i) $\quad \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}$
(M1)

$$
=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}
$$

(ii) $\quad \boldsymbol{r}=\overrightarrow{\mathrm{OP}}+s \overrightarrow{\mathrm{PQ}}$

$$
=-5 \boldsymbol{i}+11 \boldsymbol{j}-8 \boldsymbol{k}+s(\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k})
$$

$$
=(-5+s) \boldsymbol{i}+(11-2 s) \boldsymbol{j}+(-8+3 s) \boldsymbol{k}
$$ (M1)

(b) If $\left(2, y_{1}, z_{1}\right)$ lies on L_{1} then $-5+s=2$
$s=7$
$y_{1}=-3, z_{1}=13$
A1A1
(c) Evidence of correct approach
$e . g .(-5+s) \boldsymbol{i}+(11-2 s) \boldsymbol{j}+(-8+3 s) \boldsymbol{k}=2 \boldsymbol{i}+9 \boldsymbol{j}+13 \boldsymbol{k}+t(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})$
At least two correct equations
$e . g . ~-5+s=2+t, 11-2 s=9+2 t,-8+3 s=13+3 t$

Attempting to solve their equations
(M1)
One correct parameter $(s=4, t=-3)$
$\overrightarrow{\mathrm{OT}}=-\boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}$ A2
(d) Direction vector for L_{1} is $\boldsymbol{d}_{1}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$

Note: Award A1FT for their vector from (a)(i).
Direction vector for L_{2} is $\boldsymbol{d}_{2}=\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$
$\boldsymbol{d}_{1} \cdot \boldsymbol{d}_{2}=6,\left|\boldsymbol{d}_{1}\right|=\sqrt{14},\left|d_{2}\right|=\sqrt{14}$
$(A 1)(A 1)(A 1)$
$\cos \theta=\frac{6}{\sqrt{14} \sqrt{14}}\left(=\frac{6}{14}=\frac{3}{7}\right)$
$\theta=64.6^{\circ} \quad(=1.13$ radians $)$
Note: Award marks as per the markscheme if their (correct) direction vectors give $d_{1} \cdot d_{2}=-6$, leading to $\theta=115^{\circ} \quad(=2.01$ radians $)$.

