(a) (i) $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$ =-6i-2j(A1)(A1) (N2)

(ii)
$$\vec{OD} = \vec{OA} + \vec{BC}$$

= $-2i + 0j$ (= $-2i$) (A1)(A1) (N2)

[4 marks]

(b)
$$\overrightarrow{BD} = \overrightarrow{OD} - \overrightarrow{OB}$$

= $-3i + 3j$ (A1)
 $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$

$$AC = 0C - 0A$$
$$= -9i - 7j$$
(A1)

Let $\boldsymbol{\theta}$ be the angle between BD and AC

 $\cos\theta = \left(\frac{(-3i+3j)\cdot(-9i-7j)}{|(-3i+3j)||-9i-7j|}\right)$ (M1) numerator = +27 - 21 (= 6)(A1)

denominator =
$$\sqrt{18}\sqrt{130} \left(=\sqrt{2340}\right)$$
 (A1)

therefore,
$$\cos\theta = \frac{6}{\sqrt{2340}}$$

 $\theta = 82.9^{\circ} (=1.45 \text{ rad})$ (A1) (N3)

(c)
$$r = i - 3j + t(2i + 7j) \quad (= (1 + 2t)i + (-3 + 7t)j)$$
 (A1)
[1 mark]

(d) EITHER 4i + 2j + s(i + 4j) = i - 3j + t(2i + 7j) (may be implied) (M1) 4 + s = 1 + 2t(A1) 2+4s = -3+7tt = 7 and/or s = 11(A1) Position vector of P is 15i + 46j(A1) (N2)

OR

 \rightarrow

7x - 2y = 13 or equivalent	<i>(A1)</i>	
4x - y = 14 or equivalent	<i>(A1)</i>	
x = 15, y = 46	<i>(A1)</i>	
Position vector of P is $15i + 46j$	(A1)	(N2)

[4 marks]

Total [15 marks]

Vectors 3 Answers

(a) (i) Evidence of subtracting all three components in the correct order
$$M1$$

 $e.g. \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (4i - 5j + 21k) - (2i + 3j + k)$
 $= 2i - 8j + 20k$ AG NO

(ii)
$$\left| \overrightarrow{AB} \right| = \sqrt{2^2 + (-8)^2 + 20^2} \quad \left(= \sqrt{468} = 6\sqrt{13} = 2\sqrt{117} = 21.6 \right)$$
 (A1)

$$u = \frac{1}{\sqrt{468}} (2i - 8j + 20k)$$
 A1 N2
$$\left(= \frac{2}{\sqrt{468}} i - \frac{8}{\sqrt{468}} j + \frac{20}{\sqrt{468}} k, 0.0925i - 0.0370j + 0.925k, etc. \right)$$

(iii) If the scalar product is zero, the vectors are perpendicular.
R1
Note: Award **R1** for stating the relationship between the scalar product
and perpendicularity, seen anywhere in the solution.
Finding an appropriate scalar product
$$\left(u \cdot \overrightarrow{OA}, \text{ or } \overrightarrow{AB} \cdot \overrightarrow{OA}\right)$$
 M1
 $e.g. \ u \cdot \overrightarrow{OA} = \left(\frac{2}{\sqrt{468}}\right) \times 2 + \left(\frac{-8}{\sqrt{468}}\right) \times 3 + \left(\frac{20}{\sqrt{468}}\right) \times 1$ $\left(=\frac{4-24+20}{\sqrt{468}}\right)$
 $\overrightarrow{AB} \cdot \overrightarrow{OA} = 2 \times 2 + (-8) \times 3 + 20 \times 1$
 $u \cdot \overrightarrow{OA} = 0$ or $\overrightarrow{AB} \cdot \overrightarrow{OA} = 0$ **A1** N0

(b) (i) **EITHER**

$$S\left(\frac{2+4}{2}, \frac{3-5}{2}, \frac{1+21}{2}\right)$$
 (M1)(A1)

Therefore, $\vec{OS} = 3i - j + 11k$ (accept (3, -1, 11)) A1 N3

OR

$$\vec{OS} = \vec{OA} + \frac{1}{2}\vec{AB}$$
(M1)

$$= (2i+3j+k) + \frac{1}{2}(2i-8j+20k)$$
 (A1)

$$\vec{OS} = 3i - j + 11k \qquad A1 \qquad N3$$

(ii)
$$L_1 : \mathbf{r} = (3\mathbf{i} - \mathbf{j} + 11\mathbf{k}) + t(2\mathbf{i} + 3\mathbf{j} + 1\mathbf{k})$$
 A1 N1
[4 marks]

continued ...

2)

(c)	Usin	g direction vectors $(e.g. 2i + 3j + 1k \text{ and } -2i + 5j - 3k)$	(M1)	
	Valid explanation of why L_1 is not parallel to L_2		R1	N2
	e.g.	Direction vectors are not scalar multiples of each other. Angle between the direction vectors is not zero or 180. Finding the angle		
		$\boldsymbol{d}_{1} \boldsymbol{\cdot} \boldsymbol{d}_{2} \neq \left \boldsymbol{d}_{1} \right \left \boldsymbol{d}_{2} \right .$		
No	te: A	ward <i>R0</i> for "direction vectors are not equal".		
				[2 marks]
(d)	Setti	ng up any two of the three equations	(M1)	
		each correct equation 3+2t = 5-2s, $-1+3t = 10+5s$, $11+t = 10-3s$	AIAI	
	e.g.	5 + 2t = 5 - 25, $1 + 5t = 10 + 55$, $11 + t = 10 - 55$		
	U	mpt to solve these equations $11 + 10 + 53$	(M1)	
	Atte		(M1) (A1)	

Award no further marks.

[7 marks]

Total [19 marks]

3)		(1,-2,3))
(a)	(i) $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ = $i - 2j + 3k$	(M1) A1	N2
	$-\iota 2j + 5\kappa$	AI	142
	(ii) $\mathbf{r} = \overrightarrow{OP} + s \overrightarrow{PQ}$	(M1)	
	=-5i+11j-8k+s(i-2j+3k)	A1	
	=(-5+s)i +(11-2s)j+(-8+3s)k	AG	N0
			[4 marks]
(b)	If $(2, y_1, z_1)$ lies on L_1 then $-5 + s = 2$	(M1)	
	<i>s</i> = 7	A1	
	$y_1 = -3, \ z_1 = 13$	AIA1	N3
			[4 marks]
(c)	Evidence of correct approach e.g. $(-5+s)i+(11-2s)j+(-8+3s)k=2i+9j+13k+t(i+2j+3k)$	(M1)	
	At least two correct equations e.g. $-5+s=2+t$, $11-2s=9+2t$, $-8+3s=13+3t$	AIA1	
	Attempting to solve their equations	(M1)	
	One correct parameter ($s = 4, t = -3$)	A1	
	$\overrightarrow{OT} = -i + 3j + 4k$	A2	N4 [7 marks]
(d)	Direction vector for L_1 is $d_1 = i - 2j + 3k$	(A1)	
Not	te: Award <i>A1FT</i> for their vector from (a)(i).		
	Direction vector for L_2 is $d_2 = i + 2j + 3k$	(A1)	
	$d_1 \cdot d_2 = 6, \ d_1 = \sqrt{14}, \ d_2 = \sqrt{14}$ (A1)	(A1)(A1)	
	$\cos\theta = \frac{6}{\sqrt{14}\sqrt{14}} \left(= \frac{6}{14} = \frac{3}{7} \right)$	A1	
	$\theta = 64.6^{\circ}$ (=1.13 radians)	A1	N4
Not	Award marks as per the markscheme if their (correct) direction vectors give $d_1 \cdot d_2 = -6$, leading to $\theta = 115^\circ$ (= 2.01 radians).	5	
]	[7 marks]

Total [22 marks]

3)