Vectors 2 IGCSE

1)

(i) Write down $\overrightarrow{A B}$ as a column vector.
(ii) $\overrightarrow{A C}=\binom{0}{7}$.

Work out $\overrightarrow{B C}$ as a column vector.

$$
\operatorname{Answer}(b)(\mathrm{i}) \overrightarrow{A B}=(
$$

[1]

[2]
NOT TO
SCALE

$$
\overrightarrow{O R}=\mathbf{r} \text { and } \overrightarrow{O T}=\mathbf{t} .
$$

P is on $R T$ such that $R P: P T=2: 1$.
Q is on $O T$ such that $O Q=\frac{2}{3} O T$.

Write the following in terms of \mathbf{r} and/or \mathbf{t}.
Simplify your answers where possible.
(i) $\overrightarrow{Q T}$

$$
\begin{equation*}
\text { Answer(c)(i) } \overrightarrow{Q T}= \tag{1}
\end{equation*}
$$

(ii) $\overrightarrow{T P}$

$$
\begin{equation*}
\text { Answer(c)(ii) } \overrightarrow{T P}= \tag{2}
\end{equation*}
$$

(iii) $\overrightarrow{Q P}$

$$
\begin{equation*}
\text { Answer(c)(iii) } \overrightarrow{Q P}= \tag{2}
\end{equation*}
$$

(iv) Write down two conclusions you can make about the line segment $Q P$.

```
Answer(c)(iv)
```


Vectors 2 IGCSE

2)

(a)

The points $A(5,3), B(1,-4)$ and $C(-4,-2)$ are shown in the diagram.
(i) Write $\overrightarrow{C A}$ as a column vector.

$$
\operatorname{Answer}(a)(\mathrm{i}) \overrightarrow{C A}=(
$$

(ii) Find $\overrightarrow{C A}-\overrightarrow{C B}$ as a single column vector.

(iii) Complete the following statement.

$$
\begin{equation*}
\overrightarrow{C A}-\overrightarrow{C B}= \tag{1}
\end{equation*}
$$

(iv) Calculate $|\overrightarrow{C A}|$.

Vectors 2 IGCSE

2 continued)

(b)

$A B C D$ is a trapezium with $D C$ parallel to $A B$ and $D C=\frac{1}{2} A B$.
M is the midpoint of $B C$.
$\overrightarrow{A D}=\mathbf{t}$ and $\overrightarrow{D C}=\mathbf{u}$.

Find the following vectors in terms of \mathbf{t} and / or \mathbf{u}.
Give each answer in its simplest form.
(i) $\overrightarrow{A B}$

$$
\begin{equation*}
\text { Answer(b)(i) } \overrightarrow{A B}= \tag{1}
\end{equation*}
$$

(ii) $\overrightarrow{B M}$

$$
\text { Answer(b)(ii) } \overrightarrow{B M}=
$$

(iii) $\overrightarrow{A M}$

$$
\text { Answer(b)(iii) } \overrightarrow{A M}=
$$

Vectors 2 IGCSE

3)

A and B have position vectors \mathbf{a} and \mathbf{b} relative to the origin O.
C is the midpoint of $A B$ and B is the midpoint of $A D$.
Find, in terms of \mathbf{a} and \mathbf{b}, in their simplest form
(a) the position vector of C,

> Answer(a)
(b) the vector $\overrightarrow{C D}$.

Answer(b)
4)

O is the origin, $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{C B}=4 \mathbf{a}$.
M is the midpoint of $A B$.
(a) Find, in terms of \mathbf{a} and \mathbf{c}, in their simplest form
(i) the vector $\overrightarrow{A B}$,

$$
\text { Answer(a)(i) } \overrightarrow{A B}=
$$

(ii) the position vector of M.
(b) Mark the point D on the diagram where $\overrightarrow{O D}=3 \mathbf{a}+\mathbf{c}$.

Vectors 2 IGCSE

5)

(a)

The points P and Q have co-ordinates $(-3,1)$ and $(5,2)$.
(i) Write $\overrightarrow{P Q}$ as a column vector.

$$
\operatorname{Answer}(a)(\mathrm{i}) \overrightarrow{P Q}=(
$$

(ii) $\overrightarrow{Q R}=2\binom{-1}{1}$

Mark the point R on the grid.
(iii) Write down the position vector of the point P.

$$
\begin{equation*}
\operatorname{Answer}(a)(\mathrm{iii}) \quad(\tag{1}
\end{equation*}
$$

Vectors 2 IGCSE

5 continued)

(b)

In the diagram, $\overrightarrow{O U}=\mathbf{u}$ and $\overrightarrow{O V}=\mathbf{v}$.
K is on $U V$ so that $\overrightarrow{U K}=\frac{2}{3} \overrightarrow{U V}$ and L is on $O U$ so that $\overrightarrow{O L}=\frac{3}{4} \overrightarrow{O U}$.
M is the midpoint of $K L$.
Find the following in terms of \mathbf{u} and \mathbf{v}, giving your answers in their simplest form.
(i) $\overrightarrow{L K}$

$$
\begin{equation*}
\text { Answer(b)(i) } \overrightarrow{L K}= \tag{4}
\end{equation*}
$$

(ii) $\overrightarrow{O M}$
6)

O is the origin. Vectors \mathbf{p} and \mathbf{q} are shown in the diagram.
(a) Write down, in terms of \mathbf{p} and \mathbf{q}, in their simplest form
(i) the position vector of the point A,

> Answer(a)(i)
(ii) $\overrightarrow{B C}$,
Answer(a)(ii)
(iii) $\overrightarrow{B C}-\overrightarrow{A C}$.
Answer(a)(iii)
(b) If $|\mathbf{p}|=2$, write down the value of $|\overrightarrow{A B}|$.

Vectors 2 IGCSE

7)

$O P Q R$ is a parallelogram.
O is the origin.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
M is the mid-point of $P Q$ and L is on $O R$ such that $O L: L R=2: 1$.
The line $P L$ is extended to the point S.
(a) Find, in terms of \mathbf{p} and \mathbf{r}, in their simplest forms,
(i) $\overrightarrow{O Q}$,
(ii) $\overrightarrow{P R}$,
(iii) $\overrightarrow{P L}$,
(iv) the position vector of M.
(b) $P L S$ is a straight line and $P S=\frac{3}{2} P L$.

Find, in terms of \mathbf{p} and/or \mathbf{r}, in their simplest forms,
(i) $\overrightarrow{P S}$,
(ii) $\overrightarrow{Q S}$.
(c) What can you say about the points Q, R and S ?

Vectors 2 IGCSE

8)

NOT TO
SCALE
$O B C D$ is a rhombus with sides of 25 cm . The length of the diagonal $O C$ is 14 cm .
(a) Show, by calculation, that the length of the diagonal $B D$ is 48 cm .
(b) Calculate, correct to the nearest degree,
(i) angle $B C D$,
(ii) angle $O B C$.
(c) $\overrightarrow{D B}=2 \mathbf{p}$ and $\overrightarrow{O C}=2 \mathbf{q}$.

Find, in terms of \mathbf{p} and \mathbf{q},
(i) $\overrightarrow{O B}$,
(ii) $\overrightarrow{O D}$.
(d) $B E$ is parallel to $O C$ and $D C E$ is a straight line.

Find, in its simplest form, $\overrightarrow{O E}$ in terms of \mathbf{p} and \mathbf{q}.
(e) M is the mid-point of $C E$.

Find, in its simplest form, $\overrightarrow{O M}$ in terms of \mathbf{p} and \mathbf{q}.
(f) O is the origin of a co-ordinate grid. $O C$ lies along the x-axis and $\mathbf{q}=\binom{7}{0}$.
($\overrightarrow{D B}$ is vertical and $|\overrightarrow{D B}|=48$.)
Write down as column vectors
(i) p ,
(ii) $\overrightarrow{B C}$.
(g) Write down the value of $|\overrightarrow{D E}|$.

