

Answer(c)(iv)

1)

[2]

The points A(5, 3), B(1, -4) and C(-4, -2) are shown in the diagram.

(i) Write \overrightarrow{CA} as a column vector.

Answer(a)(i)
$$\overrightarrow{CA} =$$
 [1]

1

)

(ii) Find $\overrightarrow{CA} - \overrightarrow{CB}$ as a single column vector.

(iii) Complete the following statement.

$$\overrightarrow{CA} - \overrightarrow{CB} =$$
[1]

(iv) Calculate $|\vec{CA}|$.

(a)

$$Answer(b)(i) \overrightarrow{AB} = [1]$$

(ii) *BM*

Answer(b)(ii)
$$\overrightarrow{BM} =$$
[2]

(iii) \overrightarrow{AM}

Answer(b)(iii)
$$\overrightarrow{AM} =$$
 [2]

A and B have position vectors **a** and **b** relative to the origin O. C is the midpoint of AB and B is the midpoint of AD.

Find, in terms of **a** and **b**, in their simplest form

(a) the position vector of C,

Answer(a)

[2]

[2]

(b) the vector \overrightarrow{CD} .

4)

O is the origin, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{CB} = 4\mathbf{a}$. *M* is the midpoint of *AB*.

(a) Find, in terms of a and c, in their simplest form

(i) the vector \overrightarrow{AB} ,

Answer(a)(i)
$$\overrightarrow{AB} =$$
 [2]

(ii) the position vector of *M*.

Answer(a)(ii) [2]

(b) Mark the point D on the diagram where $\overrightarrow{OD} = 3\mathbf{a} + \mathbf{c}$. [2]

(a)

The points P and Q have co-ordinates (-3, 1) and (5, 2).

(i) Write \overrightarrow{PQ} as a column vector.

Answer(a)(i)
$$\overrightarrow{PQ} =$$
 [1]

/

(ii)
$$\overrightarrow{QR} = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Mark the point R on the grid.

(iii) Write down the position vector of the point *P*.

Answer(a)(iii) [1]

[1]

(b)

In the diagram, $\overrightarrow{OU} = \mathbf{u}$ and $\overrightarrow{OV} = \mathbf{v}$. *K* is on *UV* so that $\overrightarrow{UK} = \frac{2}{3} \overrightarrow{UV}$ and *L* is on *OU* so that $\overrightarrow{OL} = \frac{3}{4} \overrightarrow{OU}$. *M* is the midpoint of *KL*.

Find the following in terms of \mathbf{u} and \mathbf{v} , giving your answers in their simplest form.

(i) \overrightarrow{LK}

 $Answer(b)(i) \overrightarrow{LK} =$ [4]

(ii) \overrightarrow{OM}

Answer(b)(ii) $\overrightarrow{OM} =$ [2]

O is the origin. Vectors **p** and **q** are shown in the diagram.

- (a) Write down, in terms of **p** and **q**, in their simplest form
 - (i) the position vector of the point A,

(ii) \overrightarrow{BC} ,

(iii) $\overrightarrow{BC} - \overrightarrow{AC}$.

Answer(a)(iii) [2]

(b) If $|\mathbf{p}| = 2$, write down the value of $|\overrightarrow{AB}|$.

Answer(b)

[1]

OPQR is a parallelogram. *O* is the origin. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$. *M* is the mid-point of *PQ* and *L* is on *OR* such that OL: LR = 2:1. The line *PL* is extended to the point *S*.

(a) Find, in terms of **p** and **r**, in their simplest forms,

(i)	\overrightarrow{OQ} ,	[1]

(ii)
$$\overrightarrow{PR}$$
, [1]

(iii)
$$\overrightarrow{PL}$$
, [1]

(iv) the position vector of M. [1]

(b) *PLS* is a straight line and $PS = \frac{3}{2} PL$. Find, in terms of **p** and/or **r**, in their simplest forms, (i) \overrightarrow{PS} , (ii) \overrightarrow{QS} . [1]

(c) What can you say about the points Q, R and S? [1]

OBCD is a rhombus with sides of 25 cm. The length of the diagonal OC is 14 cm.

(a)	Show, by calculation, that the length of the diagonal <i>BD</i> is 48 cm.	[3]	
(b)	Calculate, correct to the nearest degree,		
	(i) angle <i>BCD</i> ,	[2]	
	(ii) angle <i>OBC</i> .	[1]	
(c)	$\overrightarrow{DB} = 2\mathbf{p}$ and $\overrightarrow{OC} = 2\mathbf{q}$. Find, in terms of \mathbf{p} and \mathbf{q} ,		
	(i) \overrightarrow{OB} ,	[1]	
	(ii) \overrightarrow{OD} .	[1]	
(d)	BE is parallel to OC and DCE is a straight line.		
	Find, in its simplest form, \overrightarrow{OE} in terms of p and q .	[2]	
(e)	M is the mid-point of CE .		
	Find, in its simplest form, OM in terms of p and q .	[2]	
(f)	<i>O</i> is the origin of a co-ordinate grid. <i>OC</i> lies along the <i>x</i> -axis and $\mathbf{q} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}$.		
	$(\overrightarrow{DB} \text{ is vertical and } \overrightarrow{DB} = 48.)$ Write down as column vectors		
	(i) p,	[1]	
	(ii) \overrightarrow{BC} .	[2]	
(g)	Write down the value of $\left \overrightarrow{DE} \right $.	[1]	