Vectors 1 IGCSE

1)

The diagram is made from three identical parallelograms.
O is the origin. $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O G}=\mathbf{g}$.
Write down in terms of \mathbf{a} and \mathbf{g}
(a) $\overrightarrow{G B}$,
Answer(a)
(b) the position vector of the centre of the parallelogram $B C D E$.
Answer(b)
2)

O is the origin and $O P Q R$ is a parallelogram whose diagonals intersect at M.
The vector $\overrightarrow{O P}$ is represented by \mathbf{p} and the vector $\overrightarrow{O R}$ is represented by \mathbf{r}.
(a) Write down a single vector which is represented by
(i) $\mathbf{p}+\mathbf{r}$,
Answer(a)(i)
(ii) $\frac{1}{2} \mathbf{p}-\frac{1}{2} \mathbf{r}$.
Answer(a)(ii)
(b) On the diagram, mark with a cross (x) and label with the letter S the point with position vector $\frac{1}{2} \mathbf{p}+\frac{3}{4} \mathbf{r}$.

Vectors 1 IGCSE

The position vector \mathbf{r} is given by $\mathbf{r}=2 \mathbf{p}+t(\mathbf{p}+\mathbf{q})$.
(a) Complete the table below for the given values of t.

Write each vector in its simplest form.
One result has been done for you.

t	0	1	2	3
\mathbf{r}			$4 \mathbf{p}+2 \mathbf{q}$	

(b) O is the origin and \mathbf{p} and \mathbf{q} are shown on the diagram.
(i) Plot the 4 points given by the position vectors in the table.

(ii) What can you say about these four points?

Vectors 1 IGCSE

4)

(a) $\mathbf{p}=\binom{3}{2}$ and $\mathbf{q}=\binom{6}{3}$.
(i) Find, as a single column vector, $\mathbf{p}+2 \mathbf{q}$.

$$
\left.\begin{array}{l}
\operatorname{Answer}(a)(\mathrm{i})
\end{array}\right)
$$

(ii) Calculate the value of $|\mathbf{p}+2 \mathbf{q}|$.
Answer(a)(ii)
(b)

In the diagram, $C M=M V$ and $O L=2 L V$.
O is the origin. $\overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{O V}=\mathbf{v}$.
Find, in terms of \mathbf{c} and \mathbf{v}, in their simplest forms
(i) $\overrightarrow{C M}$,
Answer(b)(i)
(ii) the position vector of M,
Answer(b)(ii)
(iii) $\overrightarrow{M L}$.

Vectors 1 IGCSE

5)

In the diagram, $P Q S, P M R, M X S$ and $Q X R$ are straight lines.
$P Q=2 Q S$.
M is the midpoint of $P R$.
$Q X: X R=1: 3$.
$\overrightarrow{P Q}=\mathbf{q}$ and $\overrightarrow{P R}=\mathbf{r}$.
(a) Find, in terms of \mathbf{q} and \mathbf{r},
(i) $\overrightarrow{R Q}$,

$$
\text { Answer(a)(i) } \overrightarrow{R Q}=
$$

(ii) $\overrightarrow{M S}$.

$$
\begin{equation*}
\text { Answer(a)(ii) } \overrightarrow{M S}= \tag{1}
\end{equation*}
$$

(b) By finding $\overrightarrow{M X}$, show that X is the midpoint of $M S$.

Answer (b)

Vectors 1 IGCSE

6)

O is the origin and $O A B C$ is a parallelogram.
$C P=P B$ and $A Q=Q B$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
Find in terms of \mathbf{a} and \mathbf{c}, in their simplest form,
(a) $\overrightarrow{P Q}$,

$$
\text { Answer(a) } \overrightarrow{P Q}=
$$

(b) the position vector of M, where M is the midpoint of $P Q$.
7)
(a)

$A B C D$ is a parallelogram.
L is the midpoint of $D C, M$ is the midpoint of $B C$ and N is the midpoint of $L M$. $\overrightarrow{A B}=\mathbf{p}$ and $\overrightarrow{A D}=\mathbf{q}$.
(i) Find the following in terms of \mathbf{p} and \mathbf{q}, in their simplest form.
(a) $\overrightarrow{A C}$

$$
\text { Answer(a)(i)(a) } \overrightarrow{A C}=
$$

(b) $L \vec{M}$

$$
\begin{equation*}
\operatorname{Answer(a)(i)(b)~} L \vec{M}= \tag{2}
\end{equation*}
$$

(c) $\overrightarrow{A N}$

$$
\begin{equation*}
\text { Answer(a)(i)(c) } \overrightarrow{A N}= \tag{2}
\end{equation*}
$$

(ii) Explain why your answer for $\overrightarrow{A N}$ shows that the point N lies on the line $A C$.

Vectors 1 IGCSE

8)

O is the origin and $O P Q R S T$ is a regular hexagon.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O T}=\mathbf{t}$.
Find, in terms of \mathbf{p} and \mathbf{t}, in their simplest forms,
(a) $\overrightarrow{P T}$,
(b) $\overrightarrow{P R}$,

Answer(b) $\overrightarrow{P R}=$
(c) the position vector of R.

Vectors 1 IGCSE

9)

NOT TO
SCALE
O is the origin and $O P R Q$ is a parallelogram.
The position vectors of P and Q are \mathbf{p} and \mathbf{q}.
X is on $P R$ so that $P X=2 X R$.

Find, in terms of \mathbf{p} and \mathbf{q}, in their simplest forms
(a) $\overrightarrow{Q X}$,

$$
\begin{equation*}
\text { Answer (a) } \overrightarrow{Q X}= \tag{2}
\end{equation*}
$$

(b) the position vector of M, the midpoint of $Q X$.

Vectors 1 IGCSE

10)

(a) P is the point $(2,5)$ and $\overrightarrow{P Q}=\binom{3}{-2}$.

Write down the co-ordinates of Q.

> Answer(a)
(b)

NOT TO
SCALE
O is the origin and $O A B C$ is a parallelogram.
M is the midpoint of $A B$.
$\overrightarrow{O C}=\mathbf{c}, \overrightarrow{O A}=3 \mathbf{a}$ and $C E=\frac{1}{3} C B$.
$O E D$ is a straight line with $O E: E D=2: 1$.
Find in terms of \mathbf{a} and \mathbf{c}, in their simplest forms
(i) $\overrightarrow{O B}$,

$$
\text { Answer(b)(i) } \overrightarrow{O B}=
$$

(ii) the position vector of M,
Answer(b)(ii)
(iii) $\overrightarrow{O E}$,

$$
\begin{equation*}
\text { Answer(b)(iii) } \overrightarrow{O E}= \tag{1}
\end{equation*}
$$

(iv) $\overrightarrow{C D}$.

$$
\text { Answer(b)(iv) } \overrightarrow{C D}=
$$

(c) Write down two facts about the lines $C D$ and $O B$.

