5)
$$\begin{vmatrix} (a) & (i) & -r + q \text{ or } q - r \\ (i) & \frac{1}{\sqrt{3}}(3q - r) \text{ oc} \end{vmatrix}$$

1 Must be simplified
3 MI for $MX = \frac{1}{\sqrt{r}} r + \frac{1}{\sqrt{r}}$ their $(-r + q)$
MI using a different route for XS or $\frac{1}{\sqrt{MS}}$ BI dep correct simplification and conclusion
6) $\begin{vmatrix} (a) & \frac{1}{2}a - \frac{1}{2}c \text{ oc} \end{vmatrix}$
 $\begin{vmatrix} (b) & \frac{1}{2}a + \frac{1}{2}c \text{ oc} \end{vmatrix}$
 $\begin{vmatrix} (b) & \frac{1}{2}a + \frac{1}{2}c \text{ oc} \end{vmatrix}$
 $\begin{vmatrix} 1 \\ 2 \\ MI \text{ correct but unsimplified e.g. $\frac{1}{2}a + -\frac{1}{2}c \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } \overline{LC} + \overline{CM} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} (b) & \frac{1}{2}p - \frac{1}{2}q \text{ oc} \end{vmatrix}$
 $\begin{vmatrix} (c) & \frac{1}{4}p + \frac{3}{4}q \text{ oc cao} \end{vmatrix}$
 $\begin{vmatrix} 1 \\ 2 \\ MI \text{ for } \overline{LC} + \overline{CM} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } \overline{LC} + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } \overline{LC} + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } \overline{LC} + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } \overline{LC} + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + \overline{DL} + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of p and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + DL + \overline{LN} \text{ o.e. can be written in terms of and/or q} \end{vmatrix}$
 $\begin{vmatrix} MI \text{ for } 2D + \overline{L} + \overline$$

(a)
$$(5, 3)$$

(b) (i) $3\mathbf{a} + \mathbf{c}$
(ii) $3\mathbf{a} + \frac{1}{2}\mathbf{c}$ or $\frac{1}{2}(6\mathbf{a} + \mathbf{c})$
(iii) $\mathbf{a} + \mathbf{c}$
(iv) $\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{c}$ or $\frac{1}{2}(3\mathbf{a} + \mathbf{c})$
(c) (CD) parallel (to OB) oe cao
 $CD = \frac{1}{2}OB$ oe cao
(c) (CD) parallel (to OB) oe cao
(c) (CD) parallel (

10)