Vectors 1 Answers IGCSE

1)

(a) $\mid 2 \mathbf{a}-\mathbf{g}$ cao
(b) $2 \frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{g}$ oe cao
2)
(a) (i) OQ
(b) $\begin{aligned} & \text { (ii) } \mathbf{R M} \text { or MP } \\ & \end{aligned}$
3)
(a) $2 \mathbf{p} \quad 3 \mathbf{p}+\mathbf{q}$ \qquad $5 \mathbf{p}+3 \mathbf{q}$ cao $1,1,1$
(b) (i) all 4 plotted correctly ft
(ii) a (straight) line

$|$| 1 |
| :--- |
| 1 |
| 2 |

Allow $1 / 2 \mathbf{R P}$

B1, B1 correct position wrt each direction of the vector $\pm 1 \mathrm{~mm}$
4)

(a) (i)	$\binom{15}{8}$	2	B1 each component
(ii)	17 www 2	2 ft	ft their 15 and their 8 . M1 for $(\text { their } 15)^{2}+(\text { their } 8)^{2}$
(b) (i)	$\frac{1}{2} \mathbf{v}-\frac{1}{2} \mathbf{c}$ or $\frac{1}{2}(\mathbf{v}-\mathbf{c})$ cao	2	M1 for $\frac{1}{2} \overrightarrow{C V}$ soi
(ii)	$\frac{1}{2} \mathbf{c}+\frac{1}{2} \mathbf{v}$ again allowing brackets cao	2	M1 for $\overrightarrow{O M}$ e.g. $\overrightarrow{O C}+\overrightarrow{C M}$ or better seen or \mathbf{v} - their (i) or $\mathbf{c}+$ their (i)
(iii)	$\frac{1}{6} \mathbf{v}-\frac{1}{2} \mathbf{c}$ again allowing brackets cao	2	M1 for any correct route e.g. $\overrightarrow{M V}+\overrightarrow{V L}$ or their (i) $-\frac{1}{3} \mathbf{v}$ or $\frac{2}{3} \mathbf{v}$-their (b)(ii)

Vectors 1 Answers IGCSE

5)

(a) (i) $-\mathbf{r}+\mathbf{q}$ or $\mathbf{q}-\mathbf{r}$
(ii) $\quad 1 / 2(3 \mathbf{q}-\mathbf{r})$ oe
(b) correct working
6)
(a) $\frac{1}{2} \mathbf{a}-\frac{1}{2} \mathbf{c}$ oe
(b) $\frac{3}{4} \mathbf{a}+\frac{3}{4} \mathbf{c}$ oe
7)
(a) (i) (a) $p+q$
(b) $\frac{1}{2} \mathbf{p}-\frac{1}{2} \mathbf{q}$ oe
(c) $\frac{3}{4} \mathbf{p}+\frac{3}{4} \mathbf{q}$ oe cao
(ii) $\overrightarrow{A N}$ is a multiple of $\overrightarrow{A C}$ o.e
(b) (i) 30
(ii) 135

Must be simplified
M1 for $\boldsymbol{M} \boldsymbol{X}=1 / 2 \mathbf{r}+3 / 4$ their $(-\mathbf{r}+\mathbf{q})$
M1 using a different route for $\boldsymbol{X S}$ or $1 / 2 \boldsymbol{M S}$
E1 dep correct simplification and conclusion

$\mathbf{2} |$| $\mathbf{M} 1$ | correct but unsimplified e.g. $\frac{1}{2} \mathbf{a}+-\frac{1}{2} \mathbf{c}$ |
| :--- | :--- |

$\mathbf{2} \quad \mathbf{M 1}$ correct but unsimplified

M1 for $\overrightarrow{L C}+\overrightarrow{C M}$ o.e. can be written in term: of \mathbf{p} and/or \mathbf{q}

M1 for $\overrightarrow{A D}+\overrightarrow{D L}+\overrightarrow{L N} \quad$ o.e can be written in terms of \mathbf{p} and/or $\mathbf{q} \mathrm{ft}$ their (i)(b)

Must be vectors (dependent on answers to (a), (c))

M1 for $2 x+x+15+75=180$ or better

1 ft
8)
(a) $\quad-\mathbf{p}+$
(b) $\mathbf{p}+2 \mathbf{t}$
(c) $2(\mathbf{p}+\mathbf{t})$ or $2 \mathbf{p}+2 \mathbf{t}$

1
2
$2 f t$
M1 for a correct route from P to R or unsimplified answer

M1 for OR or a correct route or $\mathrm{ft} \mathbf{p}+$ their (b) unsimplified provided their (b) is a vector
9)
(a) $\quad \mathbf{p}-\frac{1}{3} \mathbf{q}$ oe
(b) $\quad \frac{1}{2} \mathbf{p}+\frac{5}{6} \mathbf{q}$ oe

M1 $\overrightarrow{Q R}+\overline{R X}$ oe or $-\mathbf{q}+\mathbf{p}+\left(\frac{2}{3}\right) \mathbf{q}$ oe
$\mathrm{ft} \mathbf{q}+\frac{1}{2}$ their (a) but must be vectors or M1 for $\overrightarrow{O Q}+\overrightarrow{Q M}$ oe

Vectors 1 Answers IGCSE

10)

(a)	$(5,3)$
(b)	(\mathbf{i})
(ii)	$3 \mathbf{a}+\mathbf{c}$
(iii)	$\mathbf{a}+\frac{1}{2} \mathbf{c}$ or $\frac{1}{2}(6 \mathbf{a}+\mathbf{c})$
(iv)	$\begin{array}{l}\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{c} \text { or } \frac{1}{2}(3 \mathbf{a}+\mathbf{c}) \\ \text { (c) } \\ (C D) \text { parallel }(\text { to } O B) \text { oe cao } \\ C D=\frac{1}{2} O B \text { oe cao }\end{array}$

M1 for $\overrightarrow{O M}$ oe e.g $O A+A M$ or correct unsimplified answer

M1 for $-\mathbf{c}+\frac{3}{2} \times$ their (iii) or $\mathbf{a}+\frac{1}{2} \times$ their (iii) or correct unsimplified answer or any correct route e.g. $C E+E D$

Part (c) dependent on simplified (i) and (iv)
Dep on (i) $=k \times$ (iv)
Dep on (i) $=2 \times$ (iv) must be scalars

