1)

(a) Point D (or vector $\overrightarrow{\mathrm{AD}}$)
(b) Point P (or vector $\overrightarrow{\mathrm{AP}}$)
(c) Point Q (or vector $\overrightarrow{\mathrm{AQ}}$)

OR

Scalar projection

$$
\begin{align*}
& \overrightarrow{\mathrm{AC}}=\binom{-2}{2} \quad \overrightarrow{\mathrm{AB}}=\binom{4}{0} \\
& \text { Projection }=\frac{\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{AB}}|}=\frac{\binom{-2}{2} \cdot\binom{4}{0}}{4} \tag{M1}\\
& =-2
\end{align*}
$$

MEITHOD 1

At point of intersection:
$5+3 \lambda=-2+4 t$
$1-2 \lambda=2+t$
$1-2 \lambda=2+t$
Attempting to solve the linear system
$\lambda=-1($ or $t=1)$
$\overrightarrow{\mathrm{OP}}=\binom{2}{3}$
(A1)(A1)

METHOD 2

(changing to Cartesian coordinates)
$2 x+3 y=13, x-4 y=-10$
(M1)(A1)(A1)
Attempt to solve the system (M1)
$\overrightarrow{\mathrm{OP}}=\binom{2}{3}$
(A1)(A1)

Note: Award (C5) for the point $\mathrm{P}(2,3)$.

Vectors 1 Answers

3
B, or $r=\binom{4}{4}+t\binom{6}{2}$

D, or $\boldsymbol{r}=\binom{7}{5}+t\binom{3}{1}$
Note: Award C4 for B, D and one incorrect, C3 for one correct and nothing else, $\boldsymbol{C 1}$ for one correct and one incorrect, $\boldsymbol{C 0}$ for anything else.
4) \quad Direction vectors are $\boldsymbol{a}=\boldsymbol{i}-3 \boldsymbol{j}$ and $\boldsymbol{b}=\boldsymbol{i}-\boldsymbol{j}$.

$$
\begin{equation*}
\boldsymbol{a} \cdot \boldsymbol{b}=(1+3) \tag{A1}
\end{equation*}
$$

$|\boldsymbol{a}|=\sqrt{10},|\boldsymbol{b}|=\sqrt{2}$
$\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}\left(=\frac{4}{\sqrt{10} \sqrt{2}}\right)$
$\cos \theta=\frac{4}{\sqrt{20}}$
5) METHOD 1

Using $\boldsymbol{a} \cdot \boldsymbol{b}=a b \cos \theta$ (may be implied)
$\binom{3}{4} \cdot\binom{-2}{1}=\left|\binom{3}{4}\right|\left|\binom{-2}{1}\right| \cos \theta$
Correct value of scalar product $\binom{3}{4} \cdot\binom{-2}{1}=(3 \times-2)+(4 \times 1)=-2$
Correct magnitudes $\left|\binom{3}{4}\right|=\sqrt{25}(=5),\left|\binom{-2}{1}\right|=\sqrt{5}$
$\cos \theta=\frac{-2}{\sqrt{125}}$
(A1)

METHOD 2

$$
\begin{equation*}
\left|\binom{3}{4}\right|=\sqrt{25} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
\left|\binom{-2}{1}\right|=\sqrt{5} \tag{A1}
\end{equation*}
$$

$\left|\binom{5}{3}\right|=\sqrt{34}$
Using cosine rule (M1)

$$
\begin{aligned}
& 34=25+5-25 \sqrt{5} \cos \theta \\
& \cos \theta=-\frac{2}{\sqrt{125}}
\end{aligned}
$$

Vectors 1 Answers

6)

(a) $\sqrt{16+9}=\sqrt{25}=5$
(M1)(A1)
(C2)
(b) $\quad\binom{-2}{1}+2\binom{4}{3}=\binom{6}{7} \quad($ so B is $(6,7))$
(M1)(A1)
(c) $\quad r=\binom{-2}{1}+t\binom{4}{3} \quad$ (not unique)
(A2)

Note: Award (A1) if "r $=$ " is omitted, i.e. not an equation.
7)
(a) $\overrightarrow{\mathrm{PQ}}=\binom{5}{-3}$

A1A1
N2
(b) Using $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$

$$
\binom{\boldsymbol{x}}{\boldsymbol{y}}=\binom{1}{6}+t\binom{5}{-3}
$$

