

ABCD is a quadrilateral and *BD* is a diagonal. $AB = 26 \text{ cm}, BD = 24 \text{ cm}, \text{ angle } ABD = 40^{\circ}, \text{ angle } CBD = 40^{\circ} \text{ and angle } CDB = 30^{\circ}.$

(a) Calculate the area of triangle *ABD*.

Answer(a)	cm^2	[2]

(b) Calculate the length of *AD*.

Answer(b) cm [4]

(c) Calculate the length of *BC*.

Answer(c) cm [4]

(d) Calculate the shortest distance from the point *C* to the line *BD*.

Answer(d) cm [2]

The diagram shows some straight line distances between Auckland (A). Hamilton (H). Tauranga (T)
and Rotorua (R).
4T = 180 km $4H = 115 km$ and $HT = 90 km$

/

(a)	Calculate angle <i>HAT</i> . Show that this rounds to 25.0° , correct to	3 significant figures.		[4]
(b)	The bearing of H from A is 150°.			
	Find the bearing of			
	(i) T from A ,			
		Answer(b)(i)		[1]
	(ii) <i>A</i> from <i>T</i> .			
		Answer(b)(ii)		[1]
(c)	Calculate how far T is east of A .			
		Answer(c)	km	[3]
(d)	Angle $THR = 30^{\circ}$ and angle $HRT = 70^{\circ}$.			[3]
	Calculate the distance <i>TR</i> .			

In the quadrilateral *ABCD*, AB = 3 cm, AD = 11 cm and DC = 8 cm. The diagonal AC = 5 cm and angle $BAC = 90^{\circ}$.

Calculate

В

(a) the length of BC, Answer(a) BC = cm [2]

(b) angle ACD, Answer(b) Angle ACD = [4]

(c) the area of the quadrilateral *ABCD*.

Answer(c) cm^2 [3]

The diagram shows a field DEFG, in the shape of a quadrilateral, with a footpath along the diagonal DF.

DF = 105 m and FG = 67 m. Angle $EDF = 70^\circ$, angle $EFD = 32^\circ$ and angle $DFG = 143^\circ$.

(i) Calculate DG.

Answer(b)(i) DG = m [4]

(ii) Calculate EF.

$$Answer(b)(ii) EF = m [4]$$

З.

4.

The diagram shows the positions of London (L), Dubai (D) and Colombo (C).

(a) (i) Show that LC is 8710 km correct to the nearest kilometre.

Answer(a)(i)

- (ii) Calculate the angle *CLD*.
- Answer(a)(ii) Angle CLD = [3]

[4]

[3]

6.

The diagram shows five straight roads. PQ = 4.5 km, QR = 4 km and PR = 7 km. Angle $RPS = 40^{\circ}$ and angle $PSR = 85^{\circ}$.

(a) Calculate angle PQR and show that it rounds to 110.7° .

Answer(a)	
answer (u)	4

(b) Calculate the length of the road *RS* and show that it rounds to 4.52 km.

Answer(b)

(c) Calculate the area of the quadrilateral *PQRS*. [Use the value of 110.7° for angle *PQR* and the value of 4.52 km for *RS*.]