1. The diagram represents the ski lift in Queenstown New Zealand.

(a) The length of the cable from the bottom, B, to the top, T, is 730 metres.

The angle of elevation of T from B is 37.1°.
Calculate the change in altitude, h metres, from the bottom to the top.
(b) The lift travels along the cable at 3.65 metres per second.

Calculate how long it takes to travel from B to T.
Give your answer in minutes and seconds.
2.

The diagram shows a point P at the top of a cliff.
The point F is on the beach and vertically below P.
The point A is 55 m from F, along the horizontal beach.
The angle of elevation of P from A is 17°.

Calculate $P F$, the height of the cliff.
m [3]
3.

$J G R$ is a right-angled triangle. $J R=50 \mathrm{~m}$ and $J G=20 \mathrm{~m}$.
Calculate angle $J R G$.
4.

NOT TO
SCALE

The diagram represents a pyramid with a square base of side 10 cm .
The diagonals $A C$ and $B D$ meet at $M . P$ is vertically above M and $P B=8 \mathrm{~cm}$.
(a) Calculate the length of $B D$.
(b) Calculate $M P$, the height of the pyramid.
5. In the right-angled triangle $A B C, \cos C=\frac{4}{5}$. Find angle A.

6.

The diagram shows a pyramid with a square base $A B C D$ of side 6 cm .
The height of the pyramid, $P M$, is 4 cm , where M is the centre of the base.
Calculate the total surface area of the pyramid.
7.

The co-ordinates of A, B and C are shown on the diagram, which is not to scale.
(a) Find the length of the line $A B$.
8.

The diagram shows 3 ships A, B and C at sea.
$A B=5 \mathrm{~km}, B C=4.5 \mathrm{~km}$ and $A C=2.7 \mathrm{~km}$.
(a) Calculate angle $A C B$.

Show all your working.
(b) The bearing of A from C is 220°.

Calculate the bearing of B from C.
9.

NOT TO
SCALE

A helicopter flies 8 km due north from A to B. It then flies 5 km from B to C and returns to A. Angle $A B C=150^{\circ}$.
(a) Calculate the area of triangle $A B C$.
(b) Find the bearing of B from C.

