- 1)c Find all solutions of the equation $\cos 3x = \cos(0.5x)$, for $0 \le x \le \pi$.
- 2)c Given that $\sin x = \frac{1}{3}$, where x is an acute angle, find the **exact** value of
 - (a) $\cos x$;
 - (b) $\cos 2x$.
- 3)c Solve the equation $3 \sin^2 x = \cos^2 x$, for $0^{\circ} \le x \le 180^{\circ}$.
- 4)c (a) Factorize the expression $3\sin^2 x 11\sin x + 6$.
 - (b) Consider the equation $3\sin^2 x 11\sin x + 6 = 0$.
 - (i) Find the two values of $\sin x$ which satisfy this equation.
 - (ii) Solve the equation, for $0^{\circ} \le x \le 180^{\circ}$.
- 5)c Solve the equation $2\cos^2 x = \sin 2x$ for $0 \le x \le \pi$, giving your answers in terms of π .
- 6)c Consider $y = \sin\left(x + \frac{\pi}{9}\right)$.
 - (a) The graph of y intersects the x-axis at point A. Find the x-coordinate of A, where $0 \le x \le \pi$.
 - (b) Solve the equation $\sin\left(x+\frac{\pi}{9}\right) = -\frac{1}{2}$, for $0 \le x \le 2\pi$.
- 7)c Consider the equation $3\cos 2x + \sin x = 1$.
 - (a) Write this equation in the form f(x) = 0, where $f(x) = p \sin^2 x + q \sin x + r$, and $p, q, r \in \mathbb{Z}$.
 - (b) Factorize f(x).
 - (c) Write down the number of solutions of f(x) = 0, for $0 \le x < 2\pi$.