1)

(a) $\sin \left(2 x-\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$

$$
2 x-\frac{\pi}{3}=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

$$
x=\frac{7 \pi}{24}, \frac{13 \pi}{24}
$$

$$
(0.916,1.70)
$$

(b) (i)
$10 \cos ^{2} y+5 \sin y \cos y-5 \sin ^{2} y=7$
$10+5 \tan y-5 \tan ^{2} y=7 \sec ^{2} y$
$10+5 \tan y-5 \tan ^{2} y=7\left(\tan ^{2} y+1\right)$
$12 \tan ^{2} y-5 \tan y-3=0$
Or
$10-15 \sin ^{2} y+5 \sin y \cos y=7$
$3 \sec ^{2} y-15 \tan ^{2} y+5 \tan y=0$
$3\left(1+\tan ^{2} y\right)-15 \tan ^{2} y+5 \tan y=0$
Or
$15 \cos ^{2} y+5 \sin y \cos y-5=7$
$15+15 \tan y-12 \sec ^{2} y=0$
$15+5 \tan y-12\left(1+\tan ^{2} y\right)=0$
2)
(i) $\left(\sec ^{2} x-1\right)-2 \sec x+1=0$
$\sec x(\sec x-2)=0$
$\cos x=0.5, x=60^{\circ}, 300^{\circ}$
Alt scheme:
$\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{2}{\cos x}+1=0$
$\sin ^{2} x-2 \cos x+\cos ^{2} x=0$,
$\cos x=0.5, x=60^{\circ}, 300^{\circ}$
(ii) $\tan ^{2} 3 y=\frac{1}{5}, \tan 3 y=(\pm) \frac{1}{\sqrt{5}}$ $\left(\right.$ or $\left.\sin 3 y=(\pm) \frac{1}{\sqrt{6}}, \cos 3 y=(\pm) \frac{\sqrt{5}}{\sqrt{6}}\right)$
$3 y=0.42,2.72$, etc. $y=0.140,0.907,1.19,1.95$
(iii) $\sin \left(z+\frac{\pi}{4}\right)=\frac{2}{5}$

$$
\begin{aligned}
& z+\frac{\pi}{4}=0.4115, \quad 2.730, \quad 6.695 \\
& z=1.94, \quad 5.91
\end{aligned}
$$

M1 for expansion and use of identity
M1 for division by $\cos ^{2}$
M1 for use of correct identity

M1 for expansion and use of identity
M1 for division by $\cos ^{2}$
M1 for use of correct identity
M1 for dealing with cosec

M1 for a correct order of operations

M1 for expansion
M1 for division by $\cos ^{2}$
M1 for use of correct identity

M1

M1
M1
A1, A1
[4]
4]
M1 for use of correct identity
M1 for solution of quadratic in sec or cos
A1 for one correct solution

M1 for dealing with tan and sec correctly and for use of correct identity
M1 for solution to obtain $\cos x$

M1

M1
A1, A1

M1

DM1
A1,A1
3)
(i) $15+2 \frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{7}{\cos ^{2} \theta}$
$15+2 \tan ^{2} \theta=7 \sec ^{2} \theta$
$15+2 \tan ^{2} \theta=7\left(1+\tan ^{2} \theta\right)$
leading to $\tan ^{2} \theta=\frac{8}{5}$
or

$$
15 \cos ^{2} \theta+2 \sin ^{2} \theta=7\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
$$

$8 \cos ^{2} \theta=5 \sin ^{2} \theta$
leading to $\tan ^{2} \theta=\frac{8}{5}$
(ii) $\tan \theta= \pm \sqrt{\frac{8}{5}}$
leading to $\theta=0.902,2.24$
(also, $\sin \theta= \pm \sqrt{\frac{8}{13}}, \cos \theta= \pm \sqrt{\frac{5}{13}}$)
4)
$\frac{\cos A}{\sin A}+\frac{\sin A}{1+\cos A}$
$=\frac{\cos A+\cos ^{2} A+\sin ^{2} A}{\sin A(1+\cos A)}$
$=\frac{(1+\cos A)}{\sin A(1+\cos A)}$
$=\frac{1}{\sin A} \quad=\operatorname{cosec} A$
Alternate solution:
$\cot A+\frac{\sin A(1-\cos A)}{(1+\cos A)(1-\cos A)}$
$=\cot A+\frac{\sin A(1-\cos A)}{\left.\sin ^{2} A\right)}$
$=\cot A+\frac{1-\cos A}{\sin A}$
$=\cot A-\cot A+\frac{1}{\sin A}$ leading to $\operatorname{cosec} A$

M1 for dividing by $\cos ^{2} \theta$
M1 for $\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$
M1 for $\sec ^{2} \theta=1+\tan ^{2} \theta$
A1 for rearrangement to get required result

M1 for use of identity
M1 for simplification
M1 for use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$

M1 for attempt to solve

M1 for attempt to solve

B1

M1

M1

A1
[M1]
[M1]
[M1]
[A1]

B1 for $\cot A=\frac{\cos A}{\sin A}$
M1 for obtaining as a single fraction

M1 for use of $\cos ^{2} \mathrm{~A}+\sin ^{2} A=1$

A1 for correct simplification - answer given.

M1 for multiplying by $(1-\cos A)$

M1 for use of $\cos ^{2} A+\sin ^{2} A=1$ anywhere

M1 for cancelling $\sin A$

A1 for subtraction and simplification

Trig, identities and equations Answers
5)

