Trig, identities and equations Answers

1)	(a) $\sin\left(2x-\frac{1}{2}\right)$	$2x - \frac{\pi}{3} = \frac{1}{\sqrt{2}}$ $\frac{\pi}{3} = \frac{\pi}{4}, \frac{3\pi}{4}$	M1 M1		M1 for dealing with cosec M1 for a correct order of operations
	$x = \frac{7}{2}$ (0.916)	$\frac{\pi}{4}, \frac{13\pi}{24}$ 5, 1.70)	A1, A1 [4]	
	(b) (i) $10\cos^2 y + 5\sin y\cos y - 5\sin^2 y = 7$ $10 + 5\tan y - 5\tan^2 y = 7\sec^2 y$ $10 + 5\tan y - 5\tan^2 y = 7(\tan^2 y + 1)$ $12\tan^2 y - 5\tan y - 3 = 0$ Or $10 - 15\sin^2 y + 5\sin y\cos y = 7$ $3\sec^2 y - 15\tan^2 y + 5\tan y = 0$ $3(1 + \tan^2 y) - 15\tan^2 y + 5\tan y = 0$ Or $15\cos^2 y + 5\sin y\cos y - 5 = 7$ $15 + 15\tan y - 12\sec^2 y = 0$ $15 + 5\tan y - 12(1 + \tan^2 y) = 0$		M1 M1 A1 [4]		 M1 for expansion M1 for division by cos² M1 for use of correct identity M1 for expansion and use of identity M1 for division by cos² M1 for use of correct identity M1 for expansion and use of identity M1 for expansion and use of identity M1 for division by cos² M1 for use of correct identity
2)	(i) $(\sec^2 \sec x \cos x)$ $\sec x \cos x$ Alt s $\frac{\sin^2}{\cos^2}$ $\sin^2 x \cos x$	$x - 1) - 2\sec x + 1 = 0$ $(\sec x - 2) = 0$ $x = 0.5, \ x = 60^{\circ}, \ 300^{\circ}$ cheme: $\frac{x}{x} - \frac{2}{\cos x} + 1 = 0$ $x - 2\cos x + \cos^{2} x = 0,$ $x = 0.5, \ x = 60^{\circ}, \ 300^{\circ}$	M1 M1 A1, A1 [4]	M1 M1 A1 M1 for M1	for use of correct identity for solution of quadratic in sec or cos for one correct solution for dealing with tan and sec correctly and use of correct identity for solution to obtain cos <i>x</i>
	(ii) \tan^{-1} (or so $3y = y = 0$	ii) $\tan^2 3y = \frac{1}{5}, \tan 3y = (\pm)\frac{1}{\sqrt{5}}$ (or $\sin 3y = (\pm)\frac{1}{\sqrt{6}}, \cos 3y = (\pm)\frac{\sqrt{5}}{\sqrt{6}}$) $3y = 0.42, \ 2.72, \text{ etc.}$ $y = 0.140, \ 0.907, \ 1.19, \ 1.95$		M1 for correctly obtaining in terms of 1 trig ratio and square rooting M1 for dealing with '3' correctly A1 for first A1 for others	
	(iii) $\sin\left(\frac{z+\frac{\pi}{2}}{z+1}\right)$	$z + \frac{\pi}{4} = \frac{2}{5}$ = 0.4115, 2.730, 6.695 .94, 5.91	M1 DM1 A1,A1 [4]	M1 DM	for dealing with '2' and cosec correctly (1 for dealing with $\frac{\pi}{4}$ correctly

Trig, identities and equations Answers

3)

4)

(i)
$$15 + 2 \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{7}{\cos^2 \theta}$$

 $15 + 2\tan^2 \theta = 7 \sec^2 \theta$
 $15 + 2\tan^2 \theta = 7(1 + \tan^2 \theta)$
leading to $\tan^2 \theta = \frac{8}{5}$
or
 $15 \cos^2 \theta + 2\sin^2 \theta = 7(\cos^2 \theta + \sin^2 \theta)$
leading to $\tan^2 \theta = \frac{8}{5}$
(ii) $\tan \theta = \pm \sqrt{\frac{8}{5}}$
leading to $\tan^2 \theta = \frac{8}{5}$
(iii) $\tan \theta = \pm \sqrt{\frac{8}{5}}$
 $= \frac{\cos A}{\sin A} + \frac{\sin A}{1 + \cos A}$
 $= \frac{(1 + \cos A)}{\sin A(1 + \cos A)}$
 $= \cot A + \frac{\sin A(1 - \cos A)}{\sin^2 A}$
 $= \cot A + \frac{1 - \cos A}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
leading to $\cos cA + \frac{1}{\sin A}$
leading to $\cos cA + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
leading to $\cos cA$
 $= \cot A - \cot A + \frac{1}{\sin A}$
leading to $\cos cA$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
leading to $\cos cA$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \cot A + \frac{1}{\sin A}$
 $= \cot A - \frac{1}{\sin$

Trig, identities and equations Answers