STANDARD LEVEL TEST		NAME			••••••	
NUMBER AND ALGEBRA SECTION A – NON CALCUL		TIME 80 MINUTES ATOR 45 MINUTES		DATE		
				39 I	39 MARKS	
Ansv	ver th	e following questions in	the spaces	provided.		
1.	Con	sider the arithmetic seque	ence 2, 5, 8,	11,		
	(a)	Find u_{101} .				(3)
	(b)	Find the value of n so	that $u_n = 15$	2.		()
						(3)
	•••••					
	•••••					••
						··
2.	Let i	$f(x) = \log_a x, x > 0.$				(Total 6 marks)
_,	(a)	Write down the value	of			
	()	(i) $\log_a a$;				
		(ii) $\log_a I$;				
		(iii) $\log_a(a^4)$.				
						. .
						••

(Total 3 marks)

Give	en that $p = \log_a 5$, $q = \log_a 2$, express the following in terms of p and/or q .	
(a)	$\log_a 10$	
(b)	$\log_a 8$	
(c)	$\log_a 2.5$	
(a)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{X}$, fin value of a and of b .	
(a) (b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin	d the
, ,	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain where a is the exact of the equation a is the equation a in the exact solution of the equation a is the equation a in the exact solution of the equation a is the equation a in the equation a is the equation a in the equation a in the equation a is the equation a in the equation a in the equation a is the equation a in the equation a in the equation a in the equation a is the equation a in the equation a in the equation a in the equation a is the equation a in the equation a in the equation a in the equation a is the equation a in the equation a in the equation a in the equation a is the equation a in the equation a in the equation a in the equation a is the equation a in the equation a in the equation a in the equation a in the equation a is the equation a in the equation a is the equation a in the equation a in the equation a in the equation a is the equation a in the equation a is the equation a in the equation a in the equation a is the equation a in the equation a in the equation a is the equation a in the equation a in the equation a is the equation a in the equation a in the equation a is the equation a in the equation a in th	d the
, ,	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	ny there
, ,	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the
(b) 	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{R}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{R}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there
(b)	Given that $(2^x)^2 + (2^x) - 12$ can be written as $(2^x + a)(2^x + b)$, where $a, b \in \mathbb{Z}$, fin value of a and of b . Hence find the exact solution of the equation $(2^x)^2 + (2^x) - 12 = 0$, and explain whis only one solution.	d the ny there

(a)	$\ln a^3 b$				
(a)	in <i>a b</i>				
(b)	$\ln\left(\frac{\sqrt{a}}{b}\right)$				
					 ••
					 ••
	the exact value of $x^{x+1} = 625$	x in each of the	following equati	ions.	(10tal 6
(a)		x in each of the	following equati	ions.	(1 otal 6
(a)	$5^{x+1} = 625$	x in each of the	following equati	ons.	(1 otal 6
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				
(a) (b)	$5^{x+1} = 625$ $\log_{\mathbf{a}} (3x+5) = 2$				

Expand $(2x-1)^4$ using the Binomial I	Expansion.
	(Total 6 mar

8

Answer the following questions on the separate paper provided. You may use a calculator for this section.

(a) (b)	T: 1	e down the first three terms of the sequence $u_n = 3n$, for $n \ge 1$.	
	(i)	$\sum_{n=1}^{20} 3n;$	
	(ii)	$\sum_{n=21}^{100} 3n.$	
(a) T	The val	ent, originally worth \$1250 grows at the rate of 12% per year, compounde lue of the investment after 5 years. mber of years that must pass before the investment is worth more than \$10	d annually.
(a) T	The val	lue of the investment after 5 years.	d annually.
(a) T	The val	lue of the investment after 5 years.	d annually.
(a) T (b) T	The val	lue of the investment after 5 years.	0 000
(a) T (b) T	The val	lue of the investment after 5 years. mber of years that must pass before the investment is worth more than \$10	d annually. 0 000
(a) T (b) T	The val	lue of the investment after 5 years. mber of years that must pass before the investment is worth more than \$10	d annually.
(a) T (b) T	The val	lue of the investment after 5 years. mber of years that must pass before the investment is worth more than \$10	d annually.
(a) T (b) T	The val	lue of the investment after 5 years. mber of years that must pass before the investment is worth more than \$10	d annually.

10.	• Consider the expansion of the expression $(x^3 - 3x)^6$.						
	(a)						
	(b)	(b) Find the term in x^{12} .					
		•••••					
	•••••	•••••					
		•••••					
	•••••			(Total 6 marks)			
11.	(a)	Cons	sider the geometric sequence –3, 6, –12, 24,				
		(i)	Write down the common ratio.				
		(ii)	Find the 15 th term.				
	Consider the sequence $x - 3$, $x + 1$, $2x + 8$,						
	(b)	Whe	n $x = 5$, the sequence is geometric.	(3)			
		(i)	Write down the first three terms.				
		(ii)	Find the common ratio.	(2)			
	(c)	Find					
	(d)	For t	his value of x , find	(4)			
		(i)	the common ratio;				
		(ii)	the sum of the infinite sequence.	(3)			
				(Total 12 marks)			

