1. (a) attempt to form composite (in any order)
eg $\quad f\left(x^{3}\right),(2 x+3)^{3}$
$(f \circ g)(x)=2 x^{3}+3,2(x)^{3}+3$
A1 N2 [2 marks]
(b) evidence of appropriate approach
(M1)
eg $\quad 2 x^{3}=-3$, sketch

correct working
(A1)
eg $\quad x^{3}=\frac{-3}{2}$, sketch

-1.14471
$x=\sqrt[3]{\frac{-3}{2}}$ (exact), $-1.14[-1.15,-1.14]$
A1
N3
[3 marks]
Total [5 marks]
2. (a) evidence of set up
$e g \quad$ correct value for r (or for a or b, seen in (b))
0.996010
$r=0.996[0.996,0.997] \quad$ A1 $\begin{array}{r}\text { N2 } \\ \text { [2 marks] }\end{array}$
(b) $\quad a=3.15037, b=-15.4393$
$a=3.15[3.15,3.16], b=-15.4[-15.5,-15.4]$
A1A1 N2 [2 marks]
(c) substituting 26 into their equation

(M1)

$e g \quad y=3.15(26)-15.4$
66.4704
$66.5[66.4,66.5]$

A1 N2
[2 marks]
Total [6 marks]
3. (a) evidence of choosing cosine rule
$e g \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2(\mathrm{AB})(\mathrm{BC}) \cos (\mathrm{ABC})$
correct substitution into the right-hand side
eg $\quad 6^{2}+10^{2}-2(6)(10) \cos 100^{\circ}$
$\mathrm{AC}=12.5234$
$\mathrm{AC}=12.5(\mathrm{~cm}) \quad$ A1
(b) evidence of choosing a valid approach
(M1)
$e g \quad$ sine rule, cosine rule
correct substitution
(A1)
$e g \quad \frac{\sin (\mathrm{BC} \mathrm{A})}{6}=\frac{\sin 100^{\circ}}{12.5}, \cos (\mathrm{~B} \hat{\mathrm{C}} \mathrm{A})=\frac{(\mathrm{AC})^{2}+10^{2}-6^{2}}{2(\mathrm{AC})(10)}$
$B \hat{C} A=28.1525$
$\mathrm{B} \hat{\mathrm{C}} \mathrm{A}=28.2^{\circ}$

$$
A 1 \quad N 2
$$

[3 marks]
4. (a) 11 terms

A1
(M1)
eg $\quad\binom{n}{r} a^{n-r} b^{r}$, attempt to expand
evidence of choosing correct term
eg $\quad 8^{\text {th }}$ term, $r=7,\binom{10}{7},(x)^{3}(3)^{7}$
correct working
$e g \quad\binom{10}{7}(x)^{3}(3)^{7},\binom{10}{3}(x)^{3}(3)^{7}$,
$262440 x^{3}$ (accept $262000 x^{3}$)
5.
(a) $r=-4$

A2
Note: Award $\boldsymbol{A 1}$ for $r=4$.
(b) (i) evidence of valid approach
$e g \quad \frac{\max y \text { value }-\min y \text { value }}{2}$, distance from $y=10$
$p=8 \quad \boldsymbol{A 1}$
N2
(ii) valid approach
eg period is $24, \frac{360}{24}$, substitute a point into their $f(x)$
$q=\frac{2 \pi}{24}\left(\frac{\pi}{12}\right.$, exact $), 0.262$ (do not accept degrees)
(c) valid approach
$e g \quad$ line on graph at $y=7,8 \cos \left(\frac{2 \pi}{24}(x-4)\right)+10=7$
$x=11.46828$
$x=11.5(\operatorname{accept}(11.5,7))$

Note: Do not award the final $\boldsymbol{A 1}$ if additional values are given. If an incorrect value of q leads to multiple solutions, award the final $\boldsymbol{A 1}$ only if all solutions within the domain are given.
6. (a) (i) correct substitution into arc length formula
eg $\quad 0.7 \times 5$
arc length $=3.5(\mathrm{~cm}) \quad$ A1
(ii) valid approach
(M1)
$e g \quad 3.5+5+5, \operatorname{arc}+2 r$
perimeter $=13.5(\mathrm{~cm})$
A1 N2
[4 marks]
(b) correct substitution into area formula
$e g \quad \frac{1}{2}(0.7)(5)^{2}$
area $=8.75\left(\mathrm{~cm}^{2}\right)$
A1 N2
[2 marks]
Total [6 marks]
7. (a) correct substitution into formula
(A1)
eg $\quad 12 \mathrm{e}^{0.4(0)}$
12 bacteria in the dish A1 N2 [2 marks]
(b) correct substitution into formula
eg $\quad 12 \mathrm{e}^{0.4(4)}$
59.4363

59 bacteria in the dish (integer answer only)
(c) correct equation

$$
(A 1)
$$

$e g \quad A(t)=400,12 \mathrm{e}^{0.4 t}=400$
valid attempt to solve
(M1)
$e g$ graph, use of logs
8.76639
8.77 (hours) A1

A1 N3 [3 marks]
(d) valid attempt to solve

```
(M1)
```

$e g \quad n(4)=60,60=24 \mathrm{e}^{4 k}$, use of logs
correct working
$e g \quad$ sketch of intersection, $4 k=\ln 2.5$
$k=0.229072$
$k=\frac{\ln 2.5}{4}($ exact $), k=0.229$ A1

(e) METHOD 1

setting up an equation or inequality (accept any variable for n)
$e g \quad A(t)>B(t), 12 \mathrm{e}^{0.4 n}=24 \mathrm{e}^{0.229 n}, \mathrm{e}^{0.4 n}=2 \mathrm{e}^{0.229 n}$
correct working (A1)
$e g \quad$ sketch of intersection, $\mathrm{e}^{0.171 n}=2$
4.05521 (accept 4.05349) (A1)
$n=5$ (integer answer only) A1

METHOD 2

$A(4)=59, B(4)=60$ (from earlier work)
$A(5)=88.668, B(5)=75.446 \quad$ A1A1
valid reasoning (R1)
eg $A(4)<B(4)$ and $A(5)>B(5)$
$n=5$ (integer answer only) A1
8. (a) (i) 50 (g)
(ii) 65 rats weigh less than 70 grams
attempt to find a percentage
eg $\quad \frac{65}{80}, \frac{65}{80} \times 100$
81.25 (\%) (exact), 81.3

A1
N3 [4 marks]
(b) (i) $p=10$
(ii) subtracting to find q
(M1)
eg 75-45-10
$q=20$
A1 N2
[4 marks]
(c) evidence of mid-interval values
(M1)
eg $15,45,75,105$
$\bar{x}=52.5$ (exact), $\sigma=22.5$ (exact) A1A1
N3 [3 marks]
(d) 0.781650
78.2 (\%)

A2
$N 2$
[2 marks]
(e) recognize binomial probability
(M1)
$e g \quad X \sim \mathrm{~B}(n, p),\binom{5}{r} \times 0.782^{r} \times 0.218^{5-r}$
valid approach
(M1)
eg $\mathrm{P}(X \leq 3)$
0.30067
0.301
9. (a)

A1A1A1
N3
Note: Award $\boldsymbol{A 1}$ for approximately correct sinusoidal shape. Only if this $\boldsymbol{A 1}$ is awarded, award the following:
A1 for correct domain,
A1 for approximately correct range.
(a) recognizes decreasing to the left of minimum or right of maximum,
eg $\quad f^{\prime}(x)<0$
x-values of minimum and maximum (may be seen on sketch in part (a)) (A1)(A1) eg $\quad x=-3,(1,1.4)$
two correct intervals A1A1
eg $\quad-4<x<-3,1 \leq x \leq 4 ; x<-3, x \geq 1$
[5 marks]
(c) (i) recognizes that a is found from amplitude of wave

(R1)

y-value of minimum or maximum (A1)
$e g \quad(-3,-1.41),(1,1.41)$

$$
\begin{aligned}
& a=1.41421 \\
& a=\sqrt{2},(\text { exact }), 1.41,
\end{aligned}
$$

$$
A 1
$$

Question 9 continued

(ii) METHOD 1

recognize that shift for sine is found at x-intercept
attempt to find x-intercept
(M1)
$e g \quad \cos \left(\frac{\pi}{4} x\right)+\sin \left(\frac{\pi}{4} x\right)=0, x=3+4 k, k \in \mathbb{Z}$
$x=-1$
(A1)
$c=1$
A1

METHOD 2

attempt to use a coordinate to make an equation
eg $\quad \sqrt{2} \sin \left(\frac{\pi}{4} c\right)=1, \sqrt{2} \sin \left(\frac{\pi}{4}(3-c)\right)=0$
attempt to solve resulting equation
(MI)
$e g$ sketch, $x=3+4 k, k \in \mathbb{Z}$
$x=-1$

$$
\begin{equation*}
c=1 \tag{A1}
\end{equation*}
$$

