1. (a) y-intercept is $-6,(0,-6), y=-6$

A1
(b) valid attempt to solve
eg $\quad(x-2)(x+3)=0, x=\frac{-1 \pm \sqrt{1+24}}{2}$, one correct answer

$$
x=2, x=-3
$$

A1A1 [3 marks]
(c)

Note: The shape must be an approximately correct concave up parabola. Only if the shape is correct, award the following:
$\boldsymbol{A} \boldsymbol{I}$ for the y-intercept in circle and the vertex approximately on $x=-\frac{1}{2}$, below $y=-6$,
A1 for both the x-intercepts in circles,
A1 for both end points in ovals.
[3 marks]
2. (a) correct approach
(A1)
eg $\quad d=u_{2}-u_{1}, 5-2$

$$
d=3
$$

A1 N2 [2 marks]
(b) correct approach
eg $\quad u_{8}=2+7 \times 3$, listing terms

$$
u_{8}=23
$$

$$
A 1
$$

(c) correct approach
$e g \quad S_{8}=\frac{8}{2}(2+23)$, listing terms, $\frac{8}{2}(2(2)+7(3))$
$S_{8}=100$
A1
N2
[2 marks]
Total [6 marks]
3. (a) substituting for $(f(x))^{2}$ (may be seen in integral) A1
$e g \quad\left(x^{2}\right)^{2}, x^{4}$
correct integration, $\int x^{4} \mathrm{~d} x=\frac{1}{5} x^{5}$
substituting limits into their integrated function and subtracting (in any order)(M1)
$e g \quad \frac{2^{5}}{5}-\frac{1}{5}, \frac{1}{5}(1-4)$
$\int_{1}^{2}(f(x))^{2} \mathrm{~d} x=\frac{31}{5}(=6.2)$
A1 N2
(b) attempt to substitute limits or function into formula involving f^{2}
(M1)
$e g \quad \int_{1}^{2}(f(x))^{2} \mathrm{~d} x, \pi \int x^{4} \mathrm{~d} x$
$\frac{31}{5} \pi \quad(=6.2 \pi)$
A1
N2
[2 marks]
Total [6 marks]
4. (a) (i) $\log _{3} 27=3$
(ii) $\quad \log _{8} \frac{1}{8}=-1$

A1
(iii) $\log _{16} 4=\frac{1}{2}$
(b) correct equation with their three values
eg $\quad \frac{3}{2}=\log _{4} x, 3+(-1)-\frac{1}{2}=\log _{4} x$
correct working involving powers
eg $\quad x=4^{\frac{3}{2}}, 4^{\frac{3}{2}}=4^{\log _{4} x}$
$x=8$

A1
 [3 marks]

Total [6 marks]
(a) (i) $\quad f(-3)=-1 \quad A 1$
(ii) $f^{-1}(1)=0($ accept $y=0)$
(b) domain of f^{-1} is range of f
$e g \quad \mathrm{R} f=\mathrm{D} f^{-1}$
correct answer
A1
eg $\quad-3 \leq x \leq 3, x \in[-3,3] \quad($ accept $-3<x<3,-3 \leq y \leq 3)$
[2 marks]
(c)

A1A1

Note: Graph must be approximately correct reflection in $y=x$.
Only if the shape is approximately correct, award the following: $\boldsymbol{A 1}$ for \boldsymbol{x}-intercept at 1, and $\boldsymbol{A 1}$ for endpoints within circles.
6) (a) METHOD 1
approach involving Pythagoras' theorem
(M1)
eg $\quad 5^{2}+x^{2}=13^{2}$, labelling correct sides on triangle
finding third side is 12 (may be seen on diagram) A1
$\cos A=\frac{12}{13} \quad A G$
N0

METHOD 2

approach involving $\sin ^{2} \theta+\cos ^{2} \theta=1$
$e g \quad\left(\frac{5}{13}\right)^{2}+\cos ^{2} \theta=1, x^{2}+\frac{25}{169}=1$
correct working
eg $\quad \cos ^{2} \theta=\frac{144}{169}$
$\cos A=\frac{12}{13}$
AG N0
(b) correct substitution into $\cos 2 \theta$
(A1)
$e g \quad 1-2\left(\frac{5}{13}\right)^{2}, 2\left(\frac{12}{13}\right)^{2}-1,\left(\frac{12}{13}\right)^{2}-\left(\frac{5}{13}\right)^{2}$
correct working
eg $\quad 1-\frac{50}{169}, \frac{288}{169}-1, \frac{144}{169}-\frac{25}{169}$
$\cos 2 A=\frac{119}{169}$
A1
N2
[3 marks]
Total [5 marks]
7)

36
(a) summing probabilities to 1
(M1)
eg $\quad \sum=1,3+4+2+x=10$
correct working
(A1)
$\frac{3}{10}+\frac{4}{10}+\frac{2}{10}+p=1, p=1-\frac{9}{10}$
$p=\frac{1}{10}$
A1
[3 marks]
(b) correct substitution into formula for $\mathrm{E}(X)$
eg $\quad 0\left(\frac{3}{10}\right)+\ldots+3(p)$
correct working
eg $\frac{4}{10}+\frac{4}{10}+\frac{3}{10}$
$\mathrm{E}(X)=\frac{11}{10}(1.1)$
8)
(a) correct working

$$
\begin{align*}
& \text { eg } \quad 1-\frac{1}{6} \\
& p=\frac{5}{6}
\end{align*}
$$

(b) multiplying along correct branches
eg $\quad \frac{1}{2} \times \frac{1}{6}$
$\mathrm{P}(C \cap L)=\frac{1}{12}$
(c) multiplying along the other branch
eg $\frac{1}{2} \times \frac{1}{3}$
adding probabilities of their 2 mutually exclusive paths
eg $\quad \frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{1}{3}$
correct working
eg $\frac{1}{12}+\frac{1}{6}$
$\mathrm{P}(L)=\frac{3}{12}\left(=\frac{1}{4}\right)$

$$
A 1
$$

(d) recognizing conditional probability (seen anywhere)
eg $\mathrm{P}(C \mid L)$
correct substitution of their values into formula
eg $\frac{\frac{1}{12}}{\frac{3}{12}}$
$\mathrm{P}(C \mid L)=\frac{1}{3}$
A1
N2
(e) valid approach
eg $\quad X \sim \mathrm{~B}\left(3, \frac{1}{4}\right),\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{2},\binom{3}{1}$, three ways it could happen
correct substitution
eg $\quad\binom{3}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{2}, \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}+\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}+\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}$
correct working
eg $\quad 3\left(\frac{1}{4}\right)\left(\frac{9}{16}\right), \frac{9}{64}+\frac{9}{64}+\frac{9}{64}$
$\frac{27}{64}$
A1
N2
[4 marks]
Total [15 marks]
9.
8.
(a) (i) correct value 0 , or $36-12 p$ A2 N2
(ii) correct equation which clearly leads to $p=3$ A1
$e g \quad 36-12 p=0,36=12 p$

$$
p=3
$$

$$
A G
$$

N0
(b) METHOD 1
valid approach
eg $\quad x=-\frac{b}{2 a}$
correct working
$e g \quad-\frac{(-6)}{2(3)}, x=\frac{6}{6}$
correct answers A1A1
$e g \quad x=1, y=0 ;(1,0)$

METHOD 2

valid approach
eg $\quad f(x)=0$, factorisation, completing the square
correct working
$e g \quad x^{2}-2 x+1=0,(3 x-3)(x-1), f(x)=3(x-1)^{2}$
correct answers A1A1
$e g \quad x=1, y=0 ;(1,0)$

METHOD 3

valid approach using derivative
$e g \quad f^{\prime}(x)=0,6 x-6$
correct equation A1
eg $\quad 6 x-6=0$
correct answers A1A1 N2
$e g \quad x=1, y=0 ;(1,0)$
(c) $x=1$
(d) (i) $a=3$
(ii) $\quad h=1 \quad$ A1
(iii) $k=0$

A1
10.
9. (a) derivative of $2 x$ is 2 (must be seen in quotient rule)
derivative of $x^{2}+5$ is $2 x$ (must be seen in quotient rule)
correct substitution into quotient rule
$e g \quad \frac{\left(x^{2}+5\right)(2)-(2 x)(2 x)}{\left(x^{2}+5\right)^{2}}, \frac{2\left(x^{2}+5\right)-4 x^{2}}{\left(x^{2}+5\right)^{2}}$
correct working which clearly leads to given answer
eg $\frac{2 x^{2}+10-4 x^{2}}{\left(x^{2}+5\right)^{2}}, \frac{2 x^{2}+10-4 x^{2}}{x^{4}+10 x^{2}+25}$
$f^{\prime}(x)=\frac{10-2 x^{2}}{\left(x^{2}+5\right)^{2}}$
$A G$
(b) valid approach using substitution or inspection
$e g \quad u=x^{2}+5, \mathrm{~d} u=2 x \mathrm{~d} x, \frac{1}{2} \ln \left(x^{2}+5\right)$
$\int \frac{2 x}{x^{2}+5} \mathrm{~d} x=\int \frac{1}{u} \mathrm{~d} u$
(A1)
$\int \frac{1}{u} \mathrm{~d} u=\ln u+c$
$\ln \left(x^{2}+5\right)+c$
A1
N4
(c) correct expression for area
eg $\quad\left[\ln \left(x^{2}+5\right)\right]_{\sqrt{5}}^{q}, \int_{\sqrt{5}}^{q} \frac{2 x}{x^{2}+5} d x$
substituting limits into their integrated function and subtracting (in either order)
$e g \quad \ln \left(q^{2}+5\right)-\ln \left(\sqrt{5}^{2}+5\right)$
correct working
$e g \quad \ln \left(q^{2}+5\right)-\ln 10, \ln \frac{q^{2}+5}{10}$
equating their expression to $\ln 7$ (seen anywhere)
eg $\quad \ln \left(q^{2}+5\right)-\ln 10=\ln 7, \ln \frac{q^{2}+5}{10}=\ln 7, \ln \left(q^{2}+5\right)=\ln 7+\ln 10$
correct equation without logs
eg $\quad \frac{q^{2}+5}{10}=7, q^{2}+5=70$
$q^{2}=65$
$q=\sqrt{65}$
Note: Award $\boldsymbol{A 0}$ for $q= \pm \sqrt{65}$.

