SL DIFFERENTIATION ANSWERS 2014

Non Calculator

1) $\mathrm{N} 12 / 5 / \mathrm{MATME} / \mathrm{SP} 1 / \mathrm{ENG} / \mathrm{TZ} 0 / \mathrm{XX} / \mathrm{M}$
(a) METHOD 1
evidence of choosing quotient rule
e.g. $\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$
evidence of correct differentiation (must be seen in quotient rule)
e.g. $\frac{\mathrm{d}}{\mathrm{d} x}(6 x)=6, \frac{\mathrm{~d}}{\mathrm{~d} x}(x+1)=1$
correct substitution into quotient rule
e.g $\frac{(x+1) 6-6 x}{(x+1)^{2}}, \frac{6 x+6-6 x}{(x+1)^{2}}$
$f^{\prime}(x)=\frac{6}{(x+1)^{2}}$

METHOD 2

evidence of choosing product rule
e.g. $\quad 6 x(x+1)^{-1}, u v^{\prime}+v u^{\prime}$
evidence of correct differentiation (must be seen in product rule)
(A1)(A1)
e.g. $\quad \frac{\mathrm{d}}{\mathrm{d} x}(6 x)=6, \frac{\mathrm{~d}}{\mathrm{~d} x}(x+1)^{-1}=-1(x+1)^{-2} \times 1$
correct working
A1
e.g. $\quad 6 x \times-(x+1)^{-2}+(x+1)^{-1} \times 6, \frac{-6 x+6(x+1)}{(x+1)^{2}}$
$f^{\prime}(x)=\frac{6}{(x+1)^{2}}$

1b)
(b) METHOD 1
evidence of choosing chain rule
e.g. formula, $\frac{1}{\left(\frac{6 x}{x+1}\right)} \times\left(\frac{6 x}{x+1}\right)^{\prime}$
correct reciprocal of $\frac{1}{\left(\frac{6 x}{x+1}\right)}$ is $\frac{x+1}{6 x}$ (seen anywhere)
correct substitution into chain rule
e.g. $\frac{1}{\left(\frac{6 x}{x+1}\right)} \times \frac{6}{(x+1)^{2}},\left(\frac{6}{(x+1)^{2}}\right)\left(\frac{x+1}{6 x}\right)$
working that clearly leads to the answer
e.g. $\quad\left(\frac{6}{(x+1)}\right)\left(\frac{1}{6 x}\right),\left(\frac{1}{(x+1)^{2}}\right)\left(\frac{x+1}{x}\right), \frac{6(x+1)}{6 x(x+1)^{2}}$
$g^{\prime}(x)=\frac{1}{x(x+1)}$
$A G$
No
[4 marks]

METHOD 2

attempt to subtract logs
e.g. $\quad \ln a-\ln b, \ln 6 x-\ln (x+1)$
correct derivatives (must be seen in correct expression)
A1A1
e.g. $\frac{6}{6 x}-\frac{1}{x+1}, \frac{1}{x}-\frac{1}{x+1}$
working that clearly leads to the answer
e.g. $\frac{x+1-x}{x(x+1)}, \frac{6 x+6-6 x}{6 x(x+1)}, \frac{6(x+1-x)}{6 x(x+1)}$
$g^{\prime}(x)=\frac{1}{x(x+1)}$

No
[4 marks]

2)

(a) evidence of choosing product rule
3)
10. (a) substitute 0 into f
eg $\ln (0+1), \ln 1$

$$
f(0)=0
$$

A1
(b) $f^{\prime}(x)=\frac{1}{x^{4}+1} \times 4 x^{3} \quad($ seen anywhere)

Note: Award $\boldsymbol{A 1}$ for $\frac{1}{x^{4}+1}$ and $\boldsymbol{A 1}$ for $4 x^{3}$.
recognizing f increasing where $f^{\prime}(x)>0$ (seen anywhere)
eg $\quad f^{\prime}(x)>0$, diagram of signs
attempt to solve $f^{\prime}(x)>0$
eg $\quad 4 x^{3}=0, x^{3}>0$
f increasing for $x>0$ (accept $x \geq 0$)
A1
(c) (i) substituting $x=1$ into $f^{\prime \prime}$
eg $\frac{4(3-1)}{(1+1)^{2}}, \frac{4 \times 2}{4}$

$$
f^{\prime \prime}(1)=2 \quad A 1
$$

(ii) valid interpretation of point of inflexion (seen anywhere)
$e g$ no change of sign in $f^{\prime \prime}(x)$, no change in concavity, f^{\prime} increasing both sides of zero
attempt to find $f^{\prime \prime}(x)$ for $x<0$
eg $\quad f^{\prime \prime}(-1), \frac{4(-1)^{2}\left(3-(-1)^{4}\right)}{\left((-1)^{4}+1\right)^{2}}$, diagram of signs
correct working leading to positive value
eg $\quad f^{\prime \prime}(-1)=2$, discussing signs of numerator and denominator
there is no point of inflexion at $x=0$
AG

3d)
(d)

A1A1A1
Notes:Award A1 for shape concave up left of POI and concave down right of POI. Only if this $\boldsymbol{A 1}$ is awarded, then award the following:
$\boldsymbol{A} 1$ for curve through $(0,0), \boldsymbol{A 1}$ for increasing throughout.
Sketch need not be drawn to scale. Only essential features need to be clear.

Total [15 marks]
4)

Function	Derivative diagram
f_{1}	(d)
f_{2}	(e)
f_{3}	(b)
f_{4}	(a)
$\mathrm{M} 02 / 520 / \mathrm{S}(1) \mathrm{M}+$	

(AG)
(A2)
(A2)
(A2)
(C6)
[6 marks]

10. (a) correct derivatives applied in quotient rule
$1,-4 x+5$
Note: Award (A1) for 1, $\boldsymbol{A 1}$ for $-4 x$ and $\boldsymbol{A 1}$ for 5, only if it is clear candidates are using the quotient rule.
correct substitution into quotient rule
e.g. $\frac{1 \times\left(-2 x^{2}+5 x-2\right)-x(-4 x+5)}{\left(-2 x^{2}+5 x-2\right)^{2}}, \frac{-2 x^{2}+5 x-2-x .-4 x+5}{\left(-2 x^{2}+5 x-2\right)^{2}}$
correct working
e.g. $\frac{-2 x^{2}+5 x-2-\left(-4 x^{2}+5 x\right)}{\left(-2 x^{2}+5 x-2\right)^{2}}$
expression clearly leading to the answer
e.g. $\frac{-2 x^{2}+5 x-2+4 x^{2}-5 x}{\left(-2 x^{2}+5 x-2\right)^{2}}$
$f^{\prime}(x)=\frac{2 x^{2}-2}{\left(-2 x^{2}+5 x-2\right)^{2}}$
(b) evidence of attempting to solve $f^{\prime}(x)=0$
e.g. $2 x^{2}-2=0$
evidence of correct working
e.g. $\quad x^{2}=1, \frac{ \pm \sqrt{16}}{4}, 2(x-1)(x+1)$
correct solution to quadratic
e.g. $\quad x= \pm 1$
correct x-coordinate $x=-1 \quad\left(\right.$ may be seen in coordinate form $\left.\left(-1, \frac{1}{9}\right)\right)$
A1
attempt to substitute -1 into f (do not accept any other value)
e.g. $f(-1)=\frac{-1}{-2 \times(-1)^{2}+5 \times(-1)-2}$
correct working
e.g. $\frac{-1}{-2-5-2}$
correct y-coordinate $y=\frac{1}{9}\left(\right.$ may be seen in coordinate form $\left.\left(-1, \frac{1}{9}\right)\right) \quad$ A1

N2

N2

