

# SL DIFFERENTIATION ANSWERS 2014

# Non Calculator

## 1) N12/5/MATME/SP1/ENG/TZ0/XX/M

## (a) METHOD 1

evidence of choosing quotient rule

e.g. 
$$\frac{u'v-uv}{v^2}$$

evidence of correct differentiation (must be seen in quotient rule)

e.g. 
$$\frac{d}{dx}(6x) = 6$$
,  $\frac{d}{dx}(x+1) = 1$ 

correct substitution into quotient rule

A1

e.g 
$$\frac{(x+1)6-6x}{(x+1)^2}$$
,  $\frac{6x+6-6x}{(x+1)^2}$ 

$$f'(x) = \frac{6}{(x+1)^2}$$

*A1* 

[5 marks]

*N4* 

#### **METHOD 2**

evidence of choosing product rule

e.g. 
$$6x(x+1)^{-1}$$
,  $uv' + vu'$ 

evidence of correct differentiation (must be seen in product rule)

e.g. 
$$\frac{d}{dx}(6x) = 6$$
,  $\frac{d}{dx}(x+1)^{-1} = -1(x+1)^{-2} \times 1$ 

correct working

*A1* 

e.g. 
$$6x \times -(x+1)^{-2} + (x+1)^{-1} \times 6$$
,  $\frac{-6x + 6(x+1)}{(x+1)^2}$ 

$$f'(x) = \frac{6}{(x+1)^2}$$

*A1* 

*N4* 

[5 marks]

continued ...

# (b) **METHOD 1**

evidence of choosing chain rule (M1)
$$1 (6x)'$$

e.g. formula, 
$$\frac{1}{\left(\frac{6x}{x+1}\right)} \times \left(\frac{6x}{x+1}\right)'$$

correct reciprocal of 
$$\frac{1}{\left(\frac{6x}{x+1}\right)}$$
 is  $\frac{x+1}{6x}$  (seen anywhere)

e.g. 
$$\frac{1}{\left(\frac{6x}{x+1}\right)} \times \frac{6}{(x+1)^2}, \left(\frac{6}{(x+1)^2}\right) \left(\frac{x+1}{6x}\right)$$

e.g. 
$$\left(\frac{6}{(x+1)}\right)\left(\frac{1}{6x}\right), \left(\frac{1}{(x+1)^2}\right)\left(\frac{x+1}{x}\right), \frac{6(x+1)}{6x(x+1)^2}$$

$$g'(x) = \frac{1}{x(x+1)} \qquad AG \qquad N0$$

[4 marks]

#### **METHOD 2**

e.g. 
$$\ln a - \ln b$$
,  $\ln 6x - \ln(x+1)$ 

e.g. 
$$\frac{6}{6x} - \frac{1}{x+1}, \frac{1}{x} - \frac{1}{x+1}$$

e.g. 
$$\frac{x+1-x}{x(x+1)}$$
,  $\frac{6x+6-6x}{6x(x+1)}$ ,  $\frac{6(x+1-x)}{6x(x+1)}$ 

$$g'(x) = \frac{1}{x(x+1)}$$
AG N0
[4 marks]

continued ...

2)

### -9- M13/5/MATME/SP1/ENG/TZ1/XX/M

(a) evidence of choosing product rule 
$$eg uv' + vu'$$
 (M1)

correct derivatives (must be seen in the product rule) 
$$\cos x$$
,  $2x$  (A1)(A1)

$$f'(x) = x^2 \cos x + 2x \sin x$$
A1 N4
[4 marks]

3) 10. (a) substitute 0 into 
$$f$$
  $eg$   $\ln(0+1)$ ,  $\ln 1$ 

$$f(0) = 0$$

A1 N2
$$[2 \text{ marks}]$$
(b)  $f'(x) = \frac{1}{x^4 + 1} \times 4x^3$  (seen anywhere)

A1A1

Note: Award A1 for  $\frac{1}{x^4 + 1}$  and A1 for  $4x^3$ .

$$eg f'(x) > 0$$
, diagram of signs

attempt to solve  $f'(x) > 0$ 

$$eg 4x^3 = 0$$
,  $x^3 > 0$ 

$$f \text{ increasing for } x > 0$$
 (accept  $x \ge 0$ )

A1 N1
$$[5 \text{ marks}]$$
(c) (i) substituting  $x = 1$  into  $f''$ 

$$eg \frac{4(3-1)}{(1+1)^2}, \frac{4 \times 2}{4}$$

$$f''(1) = 2$$
(ii) valid interpretation of point of inflexion (seen anywhere)
$$eg \text{ no change of sign in } f''(x), \text{ no change in concavity,}$$

$$f' \text{ increasing both sides of zero}$$
attempt to find  $f''(x)$  for  $x < 0$ 

$$eg f''(-1), \frac{4(-1)^2(3-(-1)^4)}{((-1)^4+1)^2}, \text{ diagram of signs}$$

$$\text{correct working leading to positive value}$$

$$eg f''(-1) = 2, \text{ discussing signs of numerator and denominator}$$

there is no point of inflexion at x = 0

continued ...

N0 [5 marks]

AG

(d)



A1A1A1

*N3* 

Notes: Award A1 for shape concave up left of POI and concave down right of POI. Only if this AI is awarded, then award the following: AI for curve through (0,0), AI for increasing throughout.

Sketch need not be drawn to scale. Only essential features need to be clear.

[3 marks]

Total [15 marks]

4)

| Function | Derivative diagram |
|----------|--------------------|
| $f_1$    | (d)                |
| $f_2$    | (e)                |
| $f_3$    | (b)                |
| $f_4$    | (a)                |

M02/520/S(1)M+

*(C6)* [6 marks]



10. (a) correct derivatives applied in quotient rule 1, -4x + 5

(A1)A1A1

**Note:** Award (A1) for 1, A1 for -4x and A1 for 5, only if it is clear candidates are using the quotient rule.

A1

correct substitution into quotient rule e.g. 
$$\frac{1 \times (-2x^2 + 5x - 2) - x(-4x + 5)}{(-2x^2 + 5x - 2)^2}$$
,  $\frac{-2x^2 + 5x - 2 - x - 4x + 5}{(-2x^2 + 5x - 2)^2}$ 

correct working

(A1)

e.g. 
$$\frac{-2x^2 + 5x - 2 - (-4x^2 + 5x)}{(-2x^2 + 5x - 2)^2}$$

expression clearly leading to the answer

*A1* 

e.g. 
$$\frac{-2x^2 + 5x - 2 + 4x^2 - 5x}{(-2x^2 + 5x - 2)^2}$$

$$f'(x) = \frac{2x^2 - 2}{(-2x^2 + 5x - 2)^2}$$

AG

[6 marks]

N0

*N*2

evidence of attempting to solve f'(x) = 0

$$e.g. 2x^2 - 2 = 0$$

evidence of correct working

A1

(M1)

e.g. 
$$x^2 = 1$$
,  $\frac{\pm\sqrt{16}}{4}$ ,  $2(x-1)(x+1)$ 

correct solution to quadratic

(A1)

e.g. 
$$x = \pm 1$$

correct x-coordinate 
$$x = -1$$
 (may be seen in coordinate form  $\left(-1, \frac{1}{9}\right)$ )

attempt to substitute -1 into f (do not accept any other value)

(M1)

e.g. 
$$f(-1) = \frac{-1}{-2 \times (-1)^2 + 5 \times (-1) - 2}$$

correct working

e.g. 
$$\frac{-1}{-2-5-2}$$

A1

correct y-coordinate 
$$y = \frac{1}{9}$$
 (may be seen in coordinate form  $\left(-1, \frac{1}{9}\right)$ )

*A1* 

[7 marks]

*N*2