

Standard Level DIFFERENTIATION TEST 2014

Non Calculator Time 50 min

1) Let
$$f(x) = \frac{6x}{x+1}$$
, for $x > 0$.

(a) Find
$$f'(x)$$
. [5 marks]

Let
$$g(x) = \ln\left(\frac{6x}{x+1}\right)$$
, for $x > 0$.

(b) Show that
$$g'(x) = \frac{1}{x(x+1)}$$
. [4 marks]

2) Consider $f(x) = x^2 \sin x$.

(a) Find
$$f'(x)$$
. [4 marks]

- 3) Consider $f(x) = \ln(x^4 + 1)$.
 - (a) Find the value of f(0). [2 marks]
 - (b) Find the set of values of x for which f is increasing. [5 marks]

The second derivative is given by $f''(x) = \frac{4x^2(3-x^4)}{(x^4+1)^2}$.

The equation f''(x) = 0 has only three solutions, when x = 0, $\pm \sqrt[4]{3}$ ($\pm 1.316...$).

- (c) (i) Find f''(1).
 - (ii) **Hence**, show that there is no point of inflexion on the graph of f at x = 0. [5 marks]
- (d) There is a point of inflexion on the graph of f at $x = \sqrt[4]{3}$ (x = 1.316...). Sketch the graph of f, for $x \ge 0$.

4) 14. Figure 1 shows the graphs of the functions f_1 , f_2 , f_3 , f_4 .

Figure 2 includes the graphs of the derivatives of the functions shown in **Figure 1**, e.g. the derivative of f_1 is shown in diagram (d).

Figure 1

Complete the table below by matching each function with its derivative.

Function	Derivative diagram
f_1	(d)
f_2	
f_3	
f_4	

5) Let $f(x) = \frac{x}{-2x^2 + 5x - 2}$ for $-2 \le x \le 4$, $x \ne \frac{1}{2}$, $x \ne 2$. The graph of f is given below.

The graph of f has a local minimum at A(1, 1) and a local maximum at B.

(a) Use the quotient rule to show that $f'(x) = \frac{2x^2 - 2}{(-2x^2 + 5x - 2)^2}$. [6 marks]

(b) Hence find the coordinates of B. [7 marks]