IB Questionbank Maths SL

Normal Distribution and Binomial Distribution Quiz Answers

0 min 0 marks

1.	(a)	$\sigma = 3$	(A1)	
		evidence of attempt to find $P(X \le 24.5)$	(M1)	
		<i>e.g.</i> $z = 1.5, \frac{24.5 - 20}{3}$		
		$P(X \le 24.5) = 0.933$	A1	N3
	(b)	(i)		

Note: Award A1 with shading that clearly extends to right of the mean, A1 for any correct label, either k, area or their value of k

(ii)	z = 1.03(64338)	(A1)	
	attempt to set up an equation	(M1)	
	<i>e.g.</i> $\frac{k-20}{3} = 1.0364, \frac{k-20}{3} = 0.85$		
	<i>k</i> = 23.1	A1	N3

[8]

5

3

(a)	symmetry of normal curve	(M1)
	<i>e.g.</i> $P(X < 25) = 0.5$	
	P(X > 27) = 0.2	A1 N2

2

M1

(b) METHOD 1

2.

finding standardized value (A1)

e.g.
$$\frac{27-25}{\sigma}$$

evidence of complement (M1)

e.g. 1-p, P(X < 27), 0.8 finding *z*-score (A1)

e.g. z = 0.84...

attempt to set up equation involving the standardized value

e.g.
$$0.84 = \frac{27 - 25}{\sigma}, 0.84 = \frac{X - \mu}{\sigma}$$

 $\sigma = 2.38$ A1 N3 5

METHOD 2

set up using normal CDF function and probability	(M1)			
<i>e.g.</i> $P(25 < X < 27) = 0.3$, $P(X < 27) = 0.8$				
correct equation	A2			
<i>e.g.</i> $P(25 < X < 27) = 0.3$, $P(X > 27) = 0.2$				
attempt to solve the equation using GDC	(M1)			
<i>e.g.</i> solver, graph, trial and error (more than two trials must be shown)				
$\sigma = 2.38$	A1	N3	5	
				[7]

3.	(a)	evidence of appropriate approach	(M1)	
		<i>e.g.</i> 1 – 0.85, diagram showing values in a normal curve $P(w \ge 82) = 0.15$	A1	N2

(b) (i) z = -1.64 A1 N1

	(ii)	evidence of appropriate approach $e.g1.64 = \frac{x - \mu}{\sigma}, \frac{68 - 76.6}{\sigma}$	(M1)		
		correct substitution $e.g1.64 = \frac{68 - 76.6}{\sigma}$	A1		
		$\sigma = 5.23$	A1	N1	
(c)	(i)	68.8 ≤ weight ≤ 84.4 <i>Note:</i> Award A1 for 68.8, A1 for 84.4, A1 for giving answer an interval.	A1A1A1 as	N3	
	(ii)	evidence of appropriate approach e.g. $P(-1.5 \le z \le 1.5)$, $P(68.76 < y < 84.44)$ P(qualify) = 0.866	(M1) A1	N2	
(d)	recog e.g. I	gnizing conditional probability $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	(M1)		
	P(wo	man and qualify) = 0.25×0.7	(A1)		
	P(wo	$\max \mid \text{qualify}) = \frac{0.25 \times 0.7}{0.866}$	A1		
	P(wo	man qualify) = 0.202	A1	N3	[15]

- **4.** (a) correct substitution into formula for E(X)(A1) $e.g. 0.05 \times 240$ E(X) = 12A1N2
 - (b) evidence of recognizing binomial probability (may be seen in part (a)) (M1)

e.g.
$$\binom{240}{15} (0.05)^{15} (0.95)^{225}, X \sim B(240, 0.05)$$

P(X =15) = 0.0733 A1 N2 2

2

e.g. using complement, summing probabilities				
$P(X \ge 10) = 0.764$	A1	N3	3	[7]

5. (a) evidence of recognizing binomial probability (may be seen in (b) or (c)) (M1) *e.g.* probability = $\begin{pmatrix} 7 \\ 4 \end{pmatrix}$ (0.9)⁴(0.1)³, X ~ B(7, 0.9), complementary probabilities probability = 0.0230 A1 N2

(b) correct expression A1A1 N2 $e.g. \begin{pmatrix} 7\\ 4 \end{pmatrix} p^4 (1-p)^3, 35p^4 (1-p)^3$

Note:	Award A1 for binomial coefficient	$\left(\operatorname{accept}\begin{pmatrix}7\\3\end{pmatrix}\right),$
	A1 for $p^4(1-p)^3$.	

(c) evidence of attempting to solve **their** equation (M1) $e.g. \begin{pmatrix} 7 \\ 4 \end{pmatrix} p^4 (1-p)^3 = 0.15$, sketch p = 0.356, 0.770 A1A1 N3

[7]

6. (a) 36 outcomes (seen anywhere, even in denominator) (A1) valid approach of listing ways to get sum of 5, showing at least two pairs (M1) *e.g.* (1, 4)(2, 3), (1, 4)(4, 1), (1, 4)(4, 1), (2, 3)(3, 2), lattice diagram $P(\text{prize}) = \frac{4}{36} \left(= \frac{1}{9} \right)$ A1 N3

(b)	recognizing binomial probability	(M1)		
	<i>e.g.</i> B $\left(8, \frac{1}{9}\right)$, binomial pdf, $\binom{8}{3}\left(\frac{1}{9}\right)^3\left(\frac{8}{9}\right)^5$			
	P(3 prizes) = 0.0426	A1	N2	[5]
				[9]

(a) (i) valid approach (M1) $e.g. np, 5 \times \frac{1}{5}$

7.

$$E(X) = 1 A1 N2$$

(ii) evidence of appropriate approach involving binomial (M1) $e.g. X \sim B\left(5, \frac{1}{5}\right)$ recognizing that Mark needs to answer 3 or more questions correctly (A1)

<i>e.g.</i> $P(X \ge 3)$	1	5		
valid approach <i>e.g.</i> $1 - P(X \le 2), P(X = 3) + P(X = 4) + P(X = 5)$	5)		M1	
P(pass) = 0.0579			A1	N3

evidence of summing probabilities to 1 (M1) (b) (i) *e.g.* $0.67 + 0.05 + (a + 2b) + \dots + 0.04 = 1$ some simplification that clearly leads to required answer *e.g.* 0.76 + 4a + 2b = 1A1 4a + 2b = 0.24AG N0 (ii) correct substitution into the formula for expected value (A1) $e.g. \ 0(0.67) + 1(0.05) + \dots + 5(0.04)$ some simplification (A1) *e.g.* $0.05 + 2a + 4b + \dots + 5(0.04) = 1$ correct equation A1 *e.g.* 13a + 5b = 0.75evidence of solving (M1) a = 0.05, b = 0.02A1A1 N4

(c)	attempt to find probability Bill passes <i>e.g.</i> $P(Y \ge 3)$	(M1)		
	correct value 0.19	A1		
	Bill (is more likely to pass)	A1	N0	
				[17]