SL - Binomial Questions Answers

0 min 0 marks

1.	(a)	evidence of attempt to find $P(X \le 475)$ <i>e.g.</i> $P(Z \le 1.25)$	(M1)		
		$P(X \le 475) = 0.894$	A1	N2	
	(b)	evidence of using the complement <i>e.g.</i> 0.73 , $1 - p$	(M1)		
		z = 0.6128	(A1)		
		setting up equation	(M1)		
		$e.g. \ \frac{a-450}{20} = 0.6128$			
		a = 462	A1	N3	
					[6]
2	1 N	$N(46, 10^2) P = N(, 10^2)$			

2.
$$A \sim N(46, 10^{-}) B \sim N(\mu, 12^{-})$$

(a)
$$P(A > 60) = 0.0808$$
 A2 N2

- (b) correct approach (A1) $e.g. P\left(Z < \frac{60 - \mu}{12}\right) = 0.85$, sketch $\frac{60 - \mu}{12} = 1.036...$ (A1) $\mu = 47.6$ A1 N2
- (c) (i) route A A1 N1

(ii) METHOD 1

P(A < 60) = 1 - 0.0808 = 0.9192	A1	
valid reason	R1	
<i>e.g.</i> probability of A getting there on time is greater than		
probability of <i>B</i>		
0.9192 > 0.85		N2

METHOD 2

P(B > 60) = 1 - 0.85 = 0.15valid reason R1e.g. probability of A getting there late is less than probability of B 0.0808 < 0.15N2

(d)	(i)	let <i>X</i> be the number of days when the van arrives before $07:00$		
		$P(X = 5) = (0.85)^5$	(A1)	
		= 0.444	A1	N2

(ii) METHOD 1

evidence of adding correct probabilities	(M1)	
<i>e.g.</i> $P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$		
correct values 0.1382 + 0.3915 + 0.4437	(A1)	
$P(X \ge 3) = 0.973$	A1	N3

METHOD 2

3.

(a)

evidence of using the complement	(M1)		
<i>e.g.</i> $P(X \ge 3) = 1 - P(X \le 2), 1 - p$			
correct values $1 - 0.02661$	(A1)		
$P(X \ge 3) = 0.973$	A1	N3	
			[13]

A1A1 N2

Note: Award A1 for vertical line to right of mean, A1 for shading to right of **their** vertical line.

evidence of recognizing symmetry e.g. 105 is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part, 105 - 100 = 100 - d			
<i>d</i> = 95	A1	N2	
evidence of using complement <i>e.g.</i> $1 - 0.32$, $1 - p$ P(d < X < 105) = 0.68	(M1) A1	N2	[6]
	<i>e.g.</i> 105 is one standard deviation above the mean so <i>d</i> is one standard deviation below the mean, shading the corresponding part, 105 - 100 = 100 - d d = 95 evidence of using complement <i>e.g.</i> $1 - 0.32$, $1 - p$	e.g. 105 is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part, $105 - 100 = 100 - d$ A1 $d = 95$ A1evidence of using complement e.g. $1 - 0.32$, $1 - p$ (M1)	e.g. 105 is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part, $105 - 100 = 100 - d$ A1N2evidence of using complement e.g. $1 - 0.32$, $1 - p$ (M1)

4. $X \sim N(7, 0.5^2)$

(a)	(i)	z = 2 P(X < 8) = P(Z < 2) = 0.977	(M1) A1	N2
	(ii)	evidence of appropriate approach <i>e.g.</i> symmetry, $z = -2$	(M1)	
		P(6 < X < 8) = 0.954 (tables 0.955)	A1	N2

Note: Award M1A1(AP) if candidates refer to 2 standard deviations from the mean, leading to 0.95.

(b) (i)

A1A1 N2

Note: Award A1 for d to the left of the mean, A1 for area to the left of d shaded.

(ii)
$$z = -1.645$$
 (A1)

$$\frac{d-7}{0.5} = -1.645 \tag{M1}$$

(c)
$$Y \sim N(\mu, 0.5^2)$$

 $P(Y < 5) = 0.2$ (M1)
 $z = -0.84162...$ A1
 $\frac{5-\mu}{0.5} = -0.8416$ (M1)

$$\mu = 5.42$$
 A1 N3

[13]

5. (a)

A1A1 N2

Notes: Award A1 for three re.g.ions, (may be shown by lines or shading) A1 for clear labelling of two re.g.ions (may be shown by percentages or cate.g.ories). r and t need not be labelled, but if they are, they may be interchanged.

(b) METHOD 1

P(X < r) = 0.1292	(A1)	
r = 6.56	A1	N2
1 - 0.1038 (= 0.8962) (may be seen later) P(X < t) = 0.8962	A1 (A1)	
t = 7.16	A1	N2
METHOD 2		
finding z-values –1.130, 1.260	A1A1	
evidence of setting up one standardized equation	(M1)	
<i>e.g.</i> $\frac{r-6.84}{0.25} = -1.13$ K, $t=1.260 \times 0.25 + 6.84$		

r = 6.56, t = 7.16 A1A1 N2N2

[7]

6.	(a)		ence of approach (1) finding 0.84, using $\frac{23.7 - 21}{\sigma}$	M1)		
			ect working $0.84 = \frac{23.7 - 21}{\sigma}, \text{ graph}$ ((A1)		
		$\sigma = 3$	3.21	A1	N2	
	(b)	(i)	evidence of attempting to find $P(X < 25.4)$ (1 e.g. using $z = 1.37$	M1)		
			P(X < 25.4) = 0.915	A1	N2	
		(ii)	evidence of recognizing symmetry (1) e.g. $b = 21 - 4.4$, using $z = -1.37$	M1)		
			<i>b</i> = 16.6	A1	N2	[7]

7. METHOD 1

(a)	$\sigma = 10$	(A1)
	$1.12 \times 10 = 11.2$	A1
	11.2 + 100	(M1)
	x = 111.2	A1 N2

(b)	100 – 11.2	(M1)		
	= 88.8	A1	N2	
				[6]

METHOD 2

(A1)	
(M1)	
A1	
A1	N2
	(M1) A1

(b)	$\frac{100-x}{10} = 1.12$	A1		
	<i>x</i> = 88.8	A1	N2	[6]

8.	(a)	Evidence of using the complement <i>e.g.</i> $1 - 0.06$ p = 0.94	(M1) A1	N2	
	(b)	For evidence of using symmetry Distance from the mean is 7 e.g. diagram, $D = mean - 7D = 10$	(M1) (A1) A1	N2	
	(c)	P(17 < H < 24) = 0.5 - 0.06 = 0.44	(M1) A1		
		$E(trees) = 200 \times 0.44$ = 88	(M1) A1	N2	[9]

9.	$X \sim N(\mu, \sigma^2)$		
	P(X > 90) = 0.15 and $P(X < 40) = 0.12$	(M1)	
	Finding standardized values 1.036, -1.175	A1A1	
	Setting up the equations $1.036 = \frac{90 - \mu}{\sigma}, -1.175 = \frac{40 - \mu}{\sigma}$	(M1)	
	$\mu = 66.6, \sigma = 22.6$	A1A1 N2N2	
			[6]

10. (a)
$$P(H < 153) = 0.705 \Rightarrow z = 0.538(836...)$$
 (A1)

Standardizing
$$\frac{153-\mu}{5}$$
 (A1)

Setting up **their** equation
$$0.5388... = \frac{153 - \mu}{5}$$
 M1

 $\mu = 150.30 \text{K}$

(b)
$$Z = \frac{153 - \mu}{5} = 1.138...$$
 (accept 1.14 from $\mu = 150.3$, or 1.2
from $\mu = 150$) (A1)
 $P(Z > 1.138) = 0.128$ (accept 0.127 from $z = 1.14$, or 0.115
from $z = 1.2$) A1 N2

[6]

11. (a) 0.0668

A2 N2

(b) Using the standardized value 1.645 (A1) k = 26.1 kg A1 N2

(c)

A1A1 N2

Note: Award A1 for vertical line to right of the mean, A1 for shading to left of **their** vertical line.

[6]

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.

 $W \sim N(2.5, 0.3^2)$

(a) (i) z = -1.67 (accept 1.67) (A1)

P(W < 2) = 0.0478	(accept answers between 0.0475 and		
0.0485)		A1	N2

(ii) z = 1 (A1)

$$P(W > 2.8) = 0.159$$
 A1 N2

			A1A1	N2
	shadin	Award A1 for a vertical line to left of mean and g to left, A1 for vertical line to right of nd shading to right.		
(iv)	Evidence of a	ppropriate calculation	M1	
	eg 1 – (0.047	790 + 0.15866), 0.8413 - 0.0478		
	P = 0.7936		AG	N0
	Note:	The final value may vary depending on what level of accuracy is used.		
		Accept their value in subsequent parts.		

(b)	(i)	<i>X</i> ~ B(10, 0.7935)			
		Evidence of calculation	M1		
		$eg P(X = 10) = (0.7935)^{10}$			
		P(X = 10) = 0.0990 (3 sf)	A1	N1	
	(ii)	METHOD 1			
		Recognizing $X \sim B(10, 0.7935)$ (may be seen in (i))	(M1)		
		$P(X \le 6) = 0.1325$ (or $P(X = 1) + + P(X = 6)$)	(A1)		
		evidence of using the complement	(M1)		
		$eg P(X \ge 7) = 1 - P(X \le 6), P(X \ge 7) = 1 - P(X < 7)$			
		$P(X \ge 7) = 0.867$	A1	N3	
		METHOD 2			
		Recognizing $X \sim B(10, 0.7935)$ (may be seen in (i))	(M1)		
		For adding terms from $P(X = 7)$ to $P(X = 10)$	(M1)		
		$P(X \ge 7) = 0.209235 + 0.301604 + 0.257629 + 0.099030$	(A1)		
		= 0.867	A1	N3	
					[13]

13. (a)
$$z = \frac{180 - 160}{20} = 1$$
 (A1)

$$\phi(1) = 0.8413 \tag{A1}$$

P(height > 180) = 1 - 0.8413= 0.159 A1 N3

(b)
$$z = -1.1800$$
 (A1)

Setting up equation $-1.18 = \frac{d-160}{20}$ (M1)

[6]

Notes: Accept any suitable notation, as long as thecandidate's intentions are clear.
The following symbols will be used in the markscheme.
Girls' height G ~ N(155, 10²), boys' height B N(160, 12²) Height H, Female F, Male M.

(a)
$$P(G > 170) = 1 - P(G < 170)$$
 (A1)

$$P(G > 170) = P\left(Z < \frac{170 - 155}{10}\right)$$
(A1)

$$P(G > 170) = 1 - \Phi (1.5) = 1 - 0.9332$$
$$= 0.0668$$

(b) z = -1.2816 (A1)

 Correct calculation (eg x = $155 + -1.282 \times 10$)
 (A1)

 x = 142 A1
 N3

A1

N3

- (c) Calculating one variable (A1)
 - eg P(B < r) = 0.95, z = 1.6449 r = 160 + 1.645(12) = 179.74 = 180 A1 N2 Any valid calculation for the second variable, including use of symmetry (A1) eg P(B < q) = 0.05, z = -1.6449q = 160 - 1.645(12) = 140.26

Note: Symbols are not required in parts (d) and (e).

(d)	$P(M \cap (B > 170)) = 0.4 \times 0.2020, P(F \cap (G > 170)) =$		
	0.6×0.0668	(A1)(A1)	
	P(H > 170) = 0.0808 + 0.04008	A1	
	= 0.12088 = 0.121 (3 sf)	A1	N2

14.

(e)
$$P(F|H > 170) = \frac{P(F \cap (H > 170))}{P(H > 170)}$$
 (M1)
= $\frac{0.60 \times 0.0668}{0.121}$ $\left(= \frac{0.0401}{0.121} \text{ or } \frac{0.04008}{0.1208} \right)$ A1
= 0.332 A1 N1

15.
$$X \sim N(\mu, \sigma^2), P(X < 3) = 0.2, P(X > 8) = 0.1$$

 $P(X < 8) = 0.9$ (M1)
Attempt to set up equations (M1)

$$\frac{3-\mu}{\sigma} = -0.8416, \ \frac{8-\mu}{\sigma} = 1.282$$
 A1A1

$$3 - \mu = -0.8416\sigma$$

 $8 - \mu = 1.282\sigma$
 $5 = 2.1236\sigma$
 $\sigma = 2.35, \quad \mu = 4.99$ A1A1 N4

[6]

[6]

[17]

16.
$$X \sim N(\mu, \sigma^2), P(X > 90) = 0.15$$
 and $P(X < 40) = 0.12$
 (M1)

 Finding standardized values $1.036, -1.175$
 A1A1

 Setting up the equations $1.036 = \frac{90 - \mu}{\sigma}, -1.175 = \frac{40 - \mu}{\sigma}$
 (M1)

 $\mu = 66.6, \sigma = 22.6$
 A1A1

17. (i)
$$P(X > 3200) = P(Z > 0.4)$$
 (M1)

$$=1-0.6554=34.5\%$$
 (= 0.345) (A1) (N2)

(ii)
$$P(2 300 < X < 3 300) = P(-1.4 < Z < 0.6)$$
 (M1)
= 0.4192+0.2257
= 0.645 (A1)
 $P(both) = (0.645)^2 = 0.416$ (A1) (N2)

(iii)
$$0.7422 = P(Z < 0.65)$$
 (A1)

$$\frac{d-3\,000}{500} = 0.65\tag{A1}$$

$$d = \$ 3325 \ (= \$ 3330 \text{ to } 3 \text{ s.f.}) \ (\text{Accept } \$3325.07)$$
 (A1) (N3)

[8]

18. (a)
$$z = \frac{185 - 170}{20} = 0.75$$
 (M1)(A1)

$$P(Z < 0.75) = 0.773 \tag{A1}$$

(b) z = -0.47 (may be implied) (A1)

$$-0.47 = \frac{d - 170}{20} \tag{M1}$$

$$d = 161$$
 (A1) (N3)

[6]

19.	(a)	(i)	<i>a</i> = -	-1	(A1)	
			b = 0).5	(A1)	
		(ii)	(a)	0.841	(A2)	
			(b)	0.6915-0.1587 (or 0.8413-0.3085)	(M1)	
				= 0.533 (3 sf)	(A1)(N2)	6

[10]

$X \sim N (80, 8^2)$ 20.

(a)
$$P(X < 72) = P(Z < -1)$$

= 1 - 0.8413 (M1)

$$= 0.159$$
 (A1)

OR
 (G2)
 2

$$P(X < 72) = 0.159$$
 (G2)
 2

(b) (i)
$$P(72 < X < 90) = P(-1 < Z < 1.25)$$
 (M1)
= 0.3413 + 0.3944 (A1)
= 0.736 (A1)

$$P(72 < X < 90) = 0.736 \tag{G3}$$

(ii)

(A1)(A1) 5

3

Note: Award (A1) for a normal curve and (A1) for the shaded area, which should not be symmetrical.

(c) 4% fail in less t	than x months
-----------------------	---------------

$\Rightarrow x = 80 - 8 \times \Phi^{-1}(0.96)$	(M1)
$= 80 - 8 \times 1.751$	(A1)
= 66.0 months	(A1)
OR	
x = 66.0 months	(G3)

[10]

21. (a)
$$P(M \ge 350) = 1 - P(M < 350) = 1 - P\left(Z < \frac{350 - 310}{30}\right)$$
 (M1)
= $1 - P(Z < 1.333) = 1 - 0.9088$
= 0.0912 (accept 0.0910 to 0.0920) (A1)

OR

$$P(M \ge 350) = 0.0912 \tag{G2}$$

Note: Award (G1) if only one of the end points is correct.

[5]

22.	(a)	(These answers may be obtained from a calculator or by finding z in each case and the corresponding area.)					
		<i>M</i> ~ .	<i>M</i> ~ <i>N</i> (750, 625)				
		(i)	i) $P(M < 740 \text{ g}) = 0.345$ (G2)				
			OR				
			z = -0.4 P($z < -0.4$) = 0.345	(A1)(A1)			
		(ii)	P ($M > 780$ g) = 0.115	(G2)			
	OR						
			z = 1.2 $P(z > 1.2) = 1 - 0.885 = 0.115$	(A1)(A1)			
		(iii)	P(740 < <i>M</i> < 780) = 0.540	(G1)			
			OR				
			1 - (0.345 + 0.115) = 0.540	(A1)	5		
	(b)	Indep	pendent events				
		Ther	efore, P (both < 740) = 0.345 ²	(M1)			
			= 0.119	(A1)	2		
	(c)	70%	have mass < 763 g	(G1)			
			efore, 70% have mass of at least $750 - 13$	(A 1)	r		
		<i>x</i> = 7	57 g	(A1)	2		

[9]

Note: Where accuracy is not specified, accept answers with greater than 3 sf accuracy, provided they are correct as far as 3 sf

(a)
$$z = \frac{197 - 187.5}{9.5} = 1.00$$
 (M1)

$$P(Z > 1) = 1 - \Phi(1) = 1 - 0.8413 = 0.1587$$

= 0.159 (3 sf) (A1)

$$= 15.9\%$$
 (A1)

OR
P
$$(H > 197) = 0.159$$
 (G2)
= 15.9% (A1)

(b)	Finding the 99 th percentile		
	$\Phi(a) = 0.99 \Longrightarrow a = 2.327 \text{ (accept 2.33)}$	(A1)	
	=>99% of heights under $187.5 + 2.327(9.5) = 209.6065$		
	= 210 (3 sf)	(A1)	
	OR		
	99% of heights under $209.6 = 210 \text{ cm} (3 \text{ sf})$	(G3)	
	Height of standard doorway = $210 + 17 = 227$ cm	(A1)	

[7]

3

4

24.	(a)	Let <i>X</i> be the random variable for the IQ. $X \sim N(100, 225)$ P(90 < X < 125) = P(-0.67 < Z < 1.67) = 0.701 70.1 percent of the population (accept 70 percent).	(M1) (A1)	
		OR P(90 < <i>X</i> < 125) = 70.1%	(G2)	2
	(b)	P($X \ge 125$) = 0.0475 (or 0.0478) P(both persons having IQ ≥ 125) = (0.0475) ² (or (0.0478) ²)	(M1) (M1)	

$$= 0.00226 \text{ (or } 0.00228) \tag{M1}$$

23.

(c) Null hypothesis (H₀): mean IQ of people with disorder is 100 (M1)
 Alternative hypothesis (H₁): mean IQ of people with disorder is less than 100 (M1)

$$P(\overline{X} < 95.2) = P\left(Z < \left(\frac{95.2 - 100}{\frac{15}{\sqrt{25}}}\right)\right) = P(Z < -1.6) = 1 - 0.9452$$

 $= 0.0548 \qquad (A1)$ The probability that the sample mean is 95.2 and the null hypothesis true is 0.0548 > 0.05. Hence the evidence is not sufficient. (R1)

25. (a)
$$Z = \frac{25 - 25.7}{0.50} = -1.4$$
 (M1)
 $P(Z < -1.4) = 1 - P(Z < 1.4)$

$$= 1 - 0.9192$$

$$= 0.0808$$
(A1)

OR

$$P(W < 25) = 0.0808 \tag{G2} 2$$

(b)
$$P(Z < -a) = 0.025 \Rightarrow P(Z < a) = 0.975$$

 $\Rightarrow a = 1.960$ (A1)
 $\frac{25 - \mu}{0.50} = -1.96 \Rightarrow \mu = 25 + 1.96 (0.50)$ (M1)
 $= 25 + 0.98 = 25.98$ (A1)

$$= 26.0 (3 \text{ sf})$$
(Af)

OR

 $\frac{25.0 - 26.0}{0.50} = -2.00 \tag{M1}$

$$P(Z < -2.00) = 1 - P(Z < 2.00)$$

= 1 - 0.9772 = 0.0228 (A1)
 ≈ 0.025 (A1)

OR

$\mu = 25.98$	(G2)	
\Rightarrow mean = 26.0 (3 sf)	(A1)(AG)	3

[9]

4

(c) Clearly, by symmetry $\mu = 25.5$ (A1) $Z = \frac{25.0 - 25.5}{\sigma} = -1.96 \Rightarrow 0.5 = 1.96\sigma$ (M1) $\Rightarrow \sigma = 0.255 \text{ kg}$ (A1)

(d) On average,
$$\frac{\text{cement saving}}{\text{bag}} = 0.5 \text{ kg}$$
 (A1)

$$\frac{\text{cost saving}}{\text{bag}} = 0.5(0.80) = \$0.40 \tag{M1}$$

To save \$5000 takes
$$\frac{5000}{0.40} = 12500$$
 bags (A1) 3

3

26. (a) Let X be the lifespan in hours $X \sim N(57, 4.4^2)$

(i)
$$a = -0.455$$
 (3 sf) (A1)
 $b = 0.682$ (3 sf) (A1)

(ii) (a)
$$P(X > 55) = P(Z > -0.455)$$

= 0.675 (A1)

(b)
$$P(55 \le X \le 60) = P\left(\frac{2}{4.4} \le Z \le \frac{3}{4.4}\right)$$

 $\approx P(0.455 \le Z \le 0.682)$
 $\approx 0.6754 + 0.752 - 1$ (A1)
 $= 0.428 (3sf)$ (A1)

OR

 $P(55 \le X \le 60) = 0.428 (3 \text{ sf})$ (G2) 5

27. (a)

Note: Candidates using tables may get slightly different answers, especially if they do not interpolate. Accept these answers.

$$P(\text{speed} > 50) = 0.3 = 1 - \Phi\left(\frac{50 - \mu}{10}\right)$$
 (A1)

Hence,
$$\frac{50 - \mu}{10} = \Phi^{-1}(0.7)$$
 (M1)

$$\mu = 50 - 10\Phi^{-1}(0.7)$$
(M1)
= 44.75599 = 44.8 km/h (3 sf) (accept 44.7) (AG) 3

(b)
$$H_1$$
: "the mean speed has been reduced by the campaign". (A1) 1

(c) One-tailed; because
$$H_1$$
 involves only "<". (A2) 2

(d) For a one-tailed test at 5% level, critical region is

$$Z < \mu_m - 1.64\sigma_m (accept - 1.65\sigma_m)$$
 (M1)

Now,
$$\mu_{\rm m} = \mu = 44.75...; \ \sigma_{\rm m} = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{25}} = 2 \ (allow ft)$$
 (A1)

So test statistic is
$$44.75... -1.64 \times 2 = 41.47$$
 (A1)

Now 41.3 < 41.47 so reject H₀, yes.

[10]

(A1)

4

1

28. (a) Area A = 0.1 (A1)

(b) **EITHER** Since $p \ (X \ge 12) = p \ (X \le 8)$, (M1) then 8 and 12 are symmetrically disposed around the (M1)(R1) mean.

Thus mean =
$$\frac{8+12}{2}$$
 (M1)

$$= 10$$
 (A1)

Notes: If a candidate says simply "by symmetry $\mu = 10$ " with no further explanation award [3 marks] (M1, A1, R1). As a full explanation is requested award an additional (A1) for saying since p(X < 8) = p(X > 12) and another (A1) for saying that the normal curve is symmetric.

OR
$$p(X \ge 12) = 0.1 \Rightarrow p\left(Z \ge \frac{12 - \mu}{\sigma}\right) = 0.1$$
 (M1)
 $\Rightarrow p\left(Z \le \frac{12 - \mu}{\sigma}\right) = 0.9$
 $p(X \le 8) = 0.1 \Rightarrow p\left(Z \le \frac{8 - \mu}{\sigma}\right) = 0.1$
 $\Rightarrow p\left(Z \le \frac{\mu - 8}{\sigma}\right) = 0.9$ (A1)

So
$$\frac{12-\mu}{\sigma} = \frac{\mu-8}{\sigma}$$
 (M1)

$$\Rightarrow 12 - \mu = \mu - 8 \tag{M1}$$
$$\Rightarrow \mu = 10 \tag{M1}$$

(c)
$$\Phi\left(\frac{12-10}{\sigma}\right) = 0.9$$
 (A1)(M1)(A1)
(12 10)

Note: Award (A1) for
$$\left(\frac{12-10}{\sigma}\right)$$
, (M1) for standardizing, and (A1) for 0.9.

$$\Rightarrow \frac{2}{\sigma} = 1.282 \text{ (or } 1.28) \tag{A1}$$

$$\sigma = \frac{2}{1.282} \left(\text{or} \frac{2}{1.28} \right) \tag{A1}$$

$$= 1.56 (3 \text{ sf})$$
 (AG) 5

Note: Working backwards from $\sigma = 1.56$ to show it leads the given data should receive a maximum of [3 marks] if done correctly.

(d)	$p(X \le 11) = p\left(Z \le \frac{11 - 10}{1.561}\right)$ (or 1.56)	(M1)(A1)				
	<i>Note:</i> Award (M1) for standardizing and (A1) for $\left(\frac{11-10}{1.561}\right)$.					
	$= p \ (Z \le 0.6407) \ (\text{or} \ 0.641 \ \text{or} \ 0.64)$	(A1)				
	$=\Phi(0.6407)$	(M1)				
	= 0.739 (3 sf)	(A1)	5			
				[16]		