IB Questionbank Maths SL

SL - Binomial Questions Answers

0 min
0 marks

1. (a) evidence of attempt to find $\mathrm{P}(X \leq 475)$
e.g. $\mathrm{P}(Z \leq 1.25)$
$\mathrm{P}(X \leq 475)=0.894$
A1 N2
(b) evidence of using the complement
(M1)
e.g. $0.73,1-p$
$z=0.6128$
(A1)
setting up equation
e.g. $\frac{a-450}{20}=0.6128$
$a=462$
A1 N3
2. $A \sim \mathrm{~N}\left(46,10^{2}\right) B \sim \mathrm{~N}\left(\mu, 12^{2}\right)$
(a) $\mathrm{P}(A>60)=0.0808$

A2 N 2
(b) correct approach
e.g. $\mathrm{P}\left(Z<\frac{60-\mu}{12}\right)=0.85$, sketch
$\frac{60-\mu}{12}=1.036 \ldots$
$\mu=47.6$
A1 N2
(c) (i) route A A1 N1

(ii) METHOD 1

$\mathrm{P}(A<60)=1-0.0808=0.9192$
A1 R1
e.g. probability of A getting there on time is greater than probability of B
$0.9192>0.85$

METHOD 2

$\mathrm{P}(B>60)=1-0.85=0.15$
A1
valid reason
R1
e.g. probability of A getting there late is less than probability of B $0.0808<0.15$
(d) (i) let X be the number of days when the van arrives before 07:00
$\mathrm{P}(X=5)=(0.85)^{5}$
$=0.444$
(ii) METHOD 1
evidence of adding correct probabilities
e.g. $\mathrm{P}(X \geq 3)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$
correct values $0.1382+0.3915+0.4437$
$\mathrm{P}(X \geq 3)=0.973$

METHOD 2

evidence of using the complement
e.g. $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2), 1-p$
correct values $1-0.02661$
$\mathrm{P}(X \geq 3)=0.973$
(M1)
A1 N2
(M1)
(A1)
A1 N3
(A1) A1 N3
[13]

Note: Award Al for vertical line to right of mean, A1 for shading to right of their vertical line.
(b) evidence of recognizing symmetry
(M1)
$e . g .105$ is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part,
$105-100=100-d$
$d=95$
(c) evidence of using complement
e.g. $1-0.32,1-p$
$\mathrm{P}(d<X<105)=0.68$
A1 N 2
[6]
4. $\quad X \sim \mathrm{~N}\left(7,0.5^{2}\right)$
(a) (i) $z=2$

$$
\mathrm{P}(X<8)=\mathrm{P}(Z<2)=0.977
$$

(ii) evidence of appropriate approach
(M1)
A1 N2

A1 N2

A1A1 N2
Note: Award Al for d to the left of the mean, Al for area to the left of d shaded.
(ii) $z=-1.645$

$$
\begin{gathered}
\frac{d-7}{0.5}=-1.645 \\
d=6.18
\end{gathered}
$$

A1 N3
(c) $\quad Y \sim \mathrm{~N}\left(\mu, 0.5^{2}\right)$

$$
\mathrm{P}(Y<5)=0.2
$$

$$
z=-0.84162 \ldots
$$

$$
\frac{5-\mu}{0.5}=-0.8416
$$

$$
\mu=5.42
$$

A1 N3
[13]
5. (a)

A1A1 N2
Notes: Award Al for three re.g.ions, (may be shown by lines or shading) Al for clear labelling of two re.g.ions (may be shown by percentages or cate.g.ories).
r and t need not be labelled, but if they are, they may be interchanged.
(b) METHOD 1

$$
\begin{aligned}
& \mathrm{P}(X<r)=0.1292 \\
& r=6.56 \\
& 1-0.1038(=0.8962) \text { (may be seen later) } \\
& \mathrm{P}(X<t)=0.8962 \\
& t=7.16
\end{aligned}
$$

METHOD 2

finding z-values $-1.130 \ldots, 1.260 \ldots$
evidence of setting up one standardized equation
e.g. $\frac{r-6.84}{0.25}=-1.13 \mathrm{~K}, t=1.260 \times 0.25+6.84$
$r=6.56, t=7.16$

A1 N2
A1
(A1)
A1 N2
6. (a) evidence of approach
(M1)
e.g. finding $0.84 \ldots$, using $\frac{23.7-21}{\sigma}$
correct working
e.g. $0.84 \ldots=\frac{23.7-21}{\sigma}$, graph
$\sigma=3.21$
(b) (i) evidence of attempting to find $\mathrm{P}(X<25.4)$
e.g. using $z=1.37$
$\mathrm{P}(X<25.4)=0.915$
(ii) evidence of recognizing symmetry
e.g. $b=21-4.4$, using $z=-1.37$ $b=16.6$
A1 N2

A1 N 2
(M1)
A1 N 2

7. METHOD 1

$$
\text { (a) } \quad \begin{aligned}
& \sigma=10 \\
& \\
& 1.12 \times 10=11.2 \\
& \\
& 11.2+100 \\
& \\
& x=111.2
\end{aligned}
$$

(b) $100-11.2$
$=88.8$
(A1)
A1
(M1)
A1 N2
(M1)
A1 N2
[6]

METHOD 2

(a) $\sigma=10$
(A1)
Evidence of using standardisation formula
$\frac{x-100}{10}=1.12$
$x=111.2$
(b) $\frac{100-x}{10}=1.12$
$x=88.8$
(M1)
A1
A1 N2

A1
A1 N 2
8. (a) Evidence of using the complement e.g. 1-0.06 $p=0.94$
(b) For evidence of using symmetry

Distance from the mean is 7
e.g. diagram, $D=$ mean -7
$D=10$
(c) $\mathrm{P}(17<H<24)=0.5-0.06$
$=0.44$
$\mathrm{E}($ trees $)=200 \times 0.44$
$=88$
(M1)
A1 N2
(M1)
(A1)
A1 N2
(M1)
A1
(M1)
A1 N2
[9]
(M1)
A1A1
(M1)
A1A1 N2N2
[6]
10. (a) $\mathrm{P}(H<153)=0.705 \Rightarrow z=0.538(836 \ldots)$

Standardizing $\frac{153-\mu}{5}$
Setting up their equation $0.5388 \ldots=\frac{153-\mu}{5}$

$$
\begin{aligned}
\mu & =150.30 \mathrm{~K} \\
& =150 \text { (to } 3 \mathrm{sf} \text {) }
\end{aligned}
$$

(b) $\quad Z=\frac{153-\mu}{5}=1.138 \ldots \quad$ (accept 1.14 from $\mu=150.3$, or 1.2
from $\mu=150$)
$\mathrm{P}(Z>1.138)=0.128 \quad$ (accept 0.127 from $z=1.14$, or 0.115 from $z=1.2$)
11. (a) 0.0668

A2 N 2
(b) Using the standardized value 1.645

$$
k=26.1 \mathrm{~kg}
$$

A1 N2
(c)

A1A1 N2

Note: Award Al for vertical line to right of the mean, Al for shading to left of their vertical line.
12.

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.
$W \sim \mathrm{~N}\left(2.5,0.3^{2}\right)$
(a) (i) $z=-1.67 \quad$ (accept 1.67)
$\mathrm{P}(W<2)=0.0478 \quad$ (accept answers between 0.0475 and 0.0485)
(ii) $z=1$
$\mathrm{P}(W>2.8)=0.159$

A1 N2
(A1)
A1 N 2
(iii)

Note: Award Al for a vertical line to left of mean and shading to left, Al for vertical line to right of mean and shading to right.
(iv) Evidence of appropriate calculation

M1

AG N0
eg $1-(0.047790+0.15866), 0.8413-0.0478$ $P=0.7936$

Note: The final value may vary depending on what level of accuracy is used.
Accept their value in subsequent parts.
(b) (i) $\quad X \sim \mathrm{~B}(10,0.7935 \ldots)$

Evidence of calculation
M1

$$
\operatorname{eg} \mathrm{P}(X=10)=(0.7935 \ldots)^{10}
$$

$$
\mathrm{P}(X=10)=0.0990(3 \mathrm{sf})
$$

A1 N1
(ii) METHOD 1

Recognizing $X \sim \mathrm{~B}(10,0.7935$...) (may be seen in (i))
$\mathrm{P}(X \leq 6)=0.1325 \ldots($ or $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=6))$
evidence of using the complement
eg $\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6), \mathrm{P}(X \geq 7)=1-\mathrm{P}(X<7)$
$\mathrm{P}(X \geq 7)=0.867$

METHOD 2

Recognizing $X \sim \mathrm{~B}(10,0.7935$...) (may be seen in (i))
For adding terms from $\mathrm{P}(X=7)$ to $\mathrm{P}(X=10)$

$$
\begin{aligned}
\mathrm{P}(X \geq 7) & =0.209235+0.301604+0.257629+0.099030 \\
& =0.867
\end{aligned}
$$

[13]
13. (a) $z=\frac{180-160}{20}=1$

$$
\begin{equation*}
\phi(1)=0.8413 \tag{A1}
\end{equation*}
$$

A1 N3
(b) $z=-1.1800$

Setting up equation $-1.18=\frac{d-160}{20}$

$$
d=136
$$

$\mathrm{P}($ height $>180)=1-0.8413$

$$
=0.159
$$

(M1)

A1 N3
14.

Notes: Accept any suitable notation, as long as thecandidate's intentions are clear.
The following symbols will be used in the markscheme.
Girls' height $G \sim N\left(155,10^{2}\right)$, boys' height $B \square N\left(160,12^{2}\right)$
Height H, Female F, Male M.
(a) $\mathrm{P}(G>170)=1-\mathrm{P}(G<170)$
$\mathrm{P}(G>170)=\mathrm{P}\left(Z<\frac{170-155}{10}\right)$

$$
\begin{aligned}
\mathrm{P}(G>170) & =1-\Phi(1.5)=1-0.9332 \\
& =0.0668
\end{aligned}
$$

(b) $\mathrm{z}=-1.2816$

Correct calculation (eg $x=155+-1.282 \times 10)$
$x=142$
A1 N3
(c) Calculating one variable

$$
\begin{aligned}
& e g \mathrm{P}(B<r)=0.95, z=1.6449 \\
& r=160+1.645(12)=179.74 \\
& \quad=180
\end{aligned}
$$

Any valid calculation for the second variable, including use of symmetry
$e g \mathrm{P}(B<q)=0.05, z=-1.6449$

$$
\begin{aligned}
q & =160-1.645(12)=140.26 \\
& =140
\end{aligned}
$$

A1 N 2

Note: Symbols are not required in parts (d) and (e).
(d) $\mathrm{P}(M \cap(B>170))=0.4 \times 0.2020, \mathrm{P}(F \cap(G>170))=$ 0.6×0.0668
(A1)(A1)
A1
A1 N2
(e) $\mathrm{P}(F \mid H>170)=\frac{\mathrm{P}(F \cap(H>170))}{\mathrm{P}(\mathrm{H}>170)}$
(M1)

$$
\begin{aligned}
& =\frac{0.60 \times 0.0668}{0.121} \quad\left(=\frac{0.0401}{0.121} \text { or } \frac{0.04008}{0.1208}\right) \\
& =0.332
\end{aligned}
$$

15. $\quad X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \mathrm{P}(X<3)=0.2, \mathrm{P}(X>8)=0.1$

$$
\begin{equation*}
\mathrm{P}(X<8)=0.9 \tag{M1}
\end{equation*}
$$

Attempt to set up equations

$$
\frac{3-\mu}{\sigma}=-0.8416, \quad \frac{8-\mu}{\sigma}=1.282
$$

$$
3-\mu=-0.8416 \sigma
$$

$$
8-\mu=1.282 \sigma
$$

$$
5=2.1236 \sigma
$$

$$
\sigma=2.35, \quad \mu=4.99
$$

16. $\quad X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \mathrm{P}(X>90)=0.15$ and $\mathrm{P}(X<40)=0.12$

Finding standardized values 1.036, -1.175
Setting up the equations $1.036=\frac{90-\mu}{\sigma},-1.175=\frac{40-\mu}{\sigma}$
$\mu=66.6, \quad \sigma=22.6$
A1A1
17. (i) $\mathrm{P}(X>3200)=\mathrm{P}(Z>0.4)$

$$
\begin{equation*}
=1-0.6554=34.5 \%(=0.345) \tag{A1}
\end{equation*}
$$

(ii) $\mathrm{P}(2300<X<3300)=\mathrm{P}(-1.4<Z<0.6)$

$$
\begin{align*}
& =0.4192+0.2257 \tag{M1}\\
& =0.645 \tag{A1}
\end{align*}
$$

$$
P(\text { both })=(0.645)^{2}=0.416
$$

$$
\text { (iii) } 0.7422=\mathrm{P}(Z<0.65)
$$

$$
\begin{aligned}
& \frac{d-3000}{500}=0.65 \\
& d=\$ 3325(=\$ 3330 \text { to } 3 \text { s.f. })(\text { Accept } \$ 3325.07)
\end{aligned}
$$

(A1)
(A1) (N3)
[8]
18. (a) $z=\frac{185-170}{20}=0.75$

$$
\mathrm{P}(Z<0.75)=0.773
$$

(b) $z=-0.47$ (may be implied)

$$
-0.47=\frac{d-170}{20}
$$

$$
d=161
$$

(M1)(A1)
(A1) (N3)
(A1)
(M1)
(A1) (N3)
19.

$$
\text { (i) } \quad \begin{align*}
a & =-1 \tag{A1}\\
b & =0.5 \tag{A1}
\end{align*}
$$

(ii) (a) 0.841
(b) $0.6915-0.1587$ (or 0.8413-0.3085) (M1)
$=0.533(3 \mathrm{sf})$
(A1)(N2) 6
(b) (i) Sketch of normal curve
(A1)(A1)

(ii) $\quad c=0.647$
(A2) 4
20. $X \sim N\left(80,8^{2}\right)$
(a) $\mathrm{P}(X<72)=\mathrm{P}(Z<-1)$
(M1)

$$
\begin{align*}
& =1-0.8413 \\
& =0.159 \tag{A1}
\end{align*}
$$

OR
$\mathrm{P}(X<72)=0.159$
(G2) 2
(b) (i) $\mathrm{P}(72<X<90)=\mathrm{P}(-1<\mathrm{Z}<1.25)$
(M1)
(A1)
(A1)
OR
$\mathrm{P}(72<X<90)=0.736$
(ii)

(A1)(A1)
Note: Award (A1) for a normal curve and (A1) for the shaded area, which should not be symmetrical.
(c) 4% fail in less than x months

$$
\begin{align*}
\Rightarrow x & =80-8 \times \Phi^{-1}(0.96) \tag{M1}\\
& =80-8 \times 1.751 \tag{A1}\\
& =66.0 \text { months }
\end{align*}
$$

OR
$x=66.0$ months
(G3) 3
[10]
21. (a) $\mathrm{P}(M \geq 350)=1-\mathrm{P}(M<350)=1-\mathrm{P}\left(Z<\frac{350-310}{30}\right)$

$$
\begin{equation*}
=1-\mathrm{P}(Z<1.333)=1-0.9088 \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=0.0912(\text { accept } 0.0910 \text { to } 0.0920) \tag{A1}
\end{equation*}
$$

OR

(b)

$\mathrm{P}(\mathrm{Z}<1.96)=1-0.025=0.975$
1.96 (30) = 58.8
$310-58.8<M<310+58.8 \Rightarrow a=251, b=369$
OR
$251<M<369$
(G3)
Note: Award (G1) if only one of the end points is correct.
22. (a) (These answers may be obtained from a calculator or by finding z in each case and the corresponding area.)
$M \sim N(750,625)$
(i) $\mathrm{P}(M<740 \mathrm{~g})=0.345$

OR

$$
\begin{equation*}
z=-0.4 \quad \mathrm{P}(z<-0.4)=0.345 \tag{A1}
\end{equation*}
$$

(ii) $\mathrm{P}(M>780 \mathrm{~g})=0.115$

OR

$$
\begin{equation*}
z=1.2 \quad \mathrm{P}(z>1.2)=1-0.885=0.115 \tag{A1}
\end{equation*}
$$

(iii) $\mathrm{P}(740<M<780)=0.540$

OR
$1-(0.345+0.115)=0.540$
(A1) 5
(b) Independent events

Therefore, $\mathrm{P}($ both $<740)=0.345^{2}$

$$
\begin{equation*}
=0.119 \tag{M1}
\end{equation*}
$$

(c) 70% have mass $<763 \mathrm{~g}$

Therefore, 70% have mass of at least $750-13$
$x=737 \mathrm{~g}$
(A1) 2
23. Note: Where accuracy is not specified, accept answers with greater than $3 s f$ accuracy, provided they are correct as far as 3 sf
(a) $z=\frac{197-187.5}{9.5}=1.00$
$P(Z>1)=1-\Phi(1)=1-0.8413=0.1587$

$$
\begin{equation*}
=0.159(3 \mathrm{sf}) \tag{A1}
\end{equation*}
$$

$$
=15.9 \%
$$

OR
$\mathrm{P}(H>197)=0.159$
$=15.9 \%$
(A1) 3
(b) Finding the $99^{\text {th }}$ percentile

$$
\begin{align*}
& \Phi(a)=0.99 \Rightarrow a=2.327(\text { accept } 2.33) \tag{A1}\\
& \Rightarrow>99 \% \text { of heights under } 187.5+2.327(9.5)=209.6065 \tag{M1}\\
&=210(3 \mathrm{sf}) \tag{G3}
\end{align*}
$$

OR
99% of heights under $209.6=210 \mathrm{~cm}(3 \mathrm{sf})$
Height of standard doorway $=210+17=227 \mathrm{~cm}$
(A1) 4
[7]
24. (a) Let X be the random variable for the IQ.
$X \sim \mathrm{~N}(100,225)$
$\mathrm{P}(90<X<125)=\mathrm{P}(-0.67<Z<1.67)$
(M1)
$=0.701$
70.1 percent of the population (accept 70 percent).

OR
$\mathrm{P}(90<X<125)=70.1 \%$
(b) $\mathrm{P}(X \geq 125)=0.0475$ (or 0.0478)
$\mathrm{P}($ both persons having $\mathrm{IQ} \geq 125)=(0.0475)^{2}\left(\right.$ or $\left.(0.0478)^{2}\right)$

$$
=0.00226(\text { or } 0.00228)
$$

(c) Null hypothesis $\left(\mathrm{H}_{0}\right)$: mean IQ of people with disorder is 100
(M1)
Alternative hypothesis $\left(\mathrm{H}_{1}\right)$: mean IQ of people with disorder is less than 100
(M1)

The probability that the sample mean is 95.2 and the null hypothesis true is $0.0548>0.05$. Hence the evidence is not sufficient.
25. (a) $Z=\frac{25-25.7}{0.50}=-1.4$
$\mathrm{P}(Z<-1.4)=1-\mathrm{P}(Z<1.4)$

$$
=1-0.9192
$$

$$
\begin{equation*}
=0.0808 \tag{A1}
\end{equation*}
$$

OR
$\mathrm{P}(W<25)=0.0808$
(G2) 2
(b) $\mathrm{P}(Z<-a)=0.025 \Rightarrow \mathrm{P}(Z<a)=0.975$
$\Rightarrow a=1.960$

$$
\begin{align*}
\frac{25-\mu}{0.50}=-1.96 \Rightarrow \mu & =25+1.96(0.50) \tag{M1}\\
& =25+0.98=25.98 \tag{A1}\\
& =26.0(3 \mathrm{sf})
\end{align*}
$$

OR

$$
\begin{align*}
\frac{25.0-26.0}{0.50} & =-2.00 \tag{M1}\\
\mathrm{P}(Z<-2.00) & =1-\mathrm{P}(Z<2.00) \\
& =1-0.9772=0.0228 \tag{A1}\\
& \approx 0.025 \tag{A1}
\end{align*}
$$

OR

$$
\begin{equation*}
\mu=25.98 \tag{G2}
\end{equation*}
$$

\Rightarrow mean $=26.0(3 \mathrm{sf})$
(c) Clearly, by symmetry $\mu=25.5$
$Z=\frac{25.0-25.5}{\sigma}=-1.96 \Rightarrow 0.5=1.96 \sigma$
$\Rightarrow \sigma=0.255 \mathrm{~kg}$
3
(d) On average, $\frac{\text { cement saving }}{\text { bag }}=0.5 \mathrm{~kg}$
$\frac{\text { cost saving }}{\text { bag }}=0.5(0.80)=\$ 0.40$
To save $\$ 5000$ takes $\frac{5000}{0.40}=12500$ bags
(A1) 3
[11]
26. (a) Let X be the lifespan in hours
$X \sim \mathrm{~N}\left(57,4.4^{2}\right)$

(i) $\quad a=-0.455(3 \mathrm{sf})$ $b=0.682(3 \mathrm{sf})$
(A1)
(A1)
(ii) (a) $\mathrm{P}(X>55)=\mathrm{P}(Z>-0.455)$

$$
=0.675
$$

(b) $\mathrm{P}(55 \leq X \leq 60)=\mathrm{P}\left(\frac{2}{4.4} \leq Z \leq \frac{3}{4.4}\right)$

$$
\approx \mathrm{P}(0.455 \leq Z \leq 0.682)
$$

$$
\begin{equation*}
\approx 0.6754+0.752-1 \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
=0.428(3 \mathrm{sf}) \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
\mathrm{P}(55 \leq X \leq 60)=0.428(3 \mathrm{sf}) \tag{G2}
\end{equation*}
$$

5
(b) 90% have died \Rightarrow shaded area $=0.9$
(M1)

Hence $\quad t=57+(4.4 \times 1.282)$
(A1)
OR $\quad t=62.6$ hours
(G3) 5
[10]
27. (a) Note: Candidates using tables may get slightly different answers, especially if they do not interpolate. Accept these answers.

$$
\begin{equation*}
P(\text { speed }>50)=0.3=1-\Phi\left(\frac{50-\mu}{10}\right) \tag{A1}
\end{equation*}
$$

Hence, $\frac{50-\mu}{10}=\Phi^{-1}(0.7)$
$\mu=50-10 \Phi^{-1}(0.7)$
$=44.75599 \ldots . .=44.8 \mathrm{~km} / \mathrm{h}(3 \mathrm{sf})($ accept 44.7$)$
(AG) 3
(b) H_{1} : "the mean speed has been reduced by the campaign".
(c) One-tailed; because H_{1} involves only "<".
(A2) 2
(d) For a one-tailed test at 5% level, critical region is
$\mathrm{Z}<\mu_{\mathrm{m}}-1.64 \sigma_{\mathrm{m}}\left(\right.$ accept $\left.-1.65 \sigma_{m}\right)$
(M1)
Now, $\mu_{\mathrm{m}}=\mu=44.75 \ldots ; \sigma_{\mathrm{m}}=\frac{\sigma}{\sqrt{n}}=\frac{10}{\sqrt{25}}=2$ (allow $f t$)
So test statistic is $44.75 \ldots-1.64 \times 2=41.47$
Now $41.3<41.47$ so reject H_{0}, yes.
(A1) 4
[10]
28. (a) Area $A=0.1$
(A1) 1
(b) EITHER Since $p(X \geq 12)=p(X \leq 8)$, mean.

$$
\begin{align*}
\text { Thus mean } & =\frac{8+12}{2} \tag{M1}\\
& =10 \tag{A1}
\end{align*}
$$

Notes: If a candidate says simply "by symmetry $\mu=10$ " with no further explanation award [3 marks] (M1, A1, R1). As a full explanation is requested award an additional (A1) for saying since $p(X<8)=p(X>12)$ and another (A1) for saying that the normal curve is symmetric.

$$
\text { OR } \begin{align*}
p(X \geq 12)=0.1 & \Rightarrow p\left(Z \geq \frac{12-\mu}{\sigma}\right)=0.1 \tag{M1}\\
& \Rightarrow p\left(Z \leq \frac{12-\mu}{\sigma}\right)=0.9 \\
p(X \leq 8)=0.1 & \Rightarrow p\left(Z \leq \frac{8-\mu}{\sigma}\right)=0.1 \\
& \Rightarrow p\left(Z \leq \frac{\mu-8}{\sigma}\right)=0.9 \tag{A1}
\end{align*}
$$

So $\frac{12-\mu}{\sigma}=\frac{\mu-8}{\sigma}$
$\Rightarrow 12-\mu=\mu-8$
$\Rightarrow \mu=10$
(c) $\Phi\left(\frac{12-10}{\sigma}\right)=0.9$
(A1)(M1)(A1)

Note: Award (A1) for $\left(\frac{12-10}{\sigma}\right)$, (M1) for standardizing, and (A1) for 0.9.
$\Rightarrow \frac{2}{\sigma}=1.282$ (or 1.28)
$\sigma=\frac{2}{1.282}\left(\right.$ or $\left.\frac{2}{1.28}\right)$
$=1.56(3 \mathrm{sf})$
(AG)
5
Note: Working backwards from $\sigma=1.56$ to show it leads the given data should receive a maximum of [3 marks] if done correctly.
(d) $p(X \leq 11)=p\left(Z \leq \frac{11-10}{1.561}\right)$ (or 1.56)

Note: Award (M1) for standardizing and (A1) for $\left(\frac{11-10}{1.561}\right)$.
$=p(Z \leq 0.6407)($ or 0.641 or 0.64$)$
(A1)
$=\Phi(0.6407)$
$=0.739$ (3 sf)
(A1) 5

