SL - Integration Volume of Revolution

194 min
194 marks

1. The graph of $f(x)=\sqrt{16-4 x^{2}}$, for $-2 \leq x \leq 2$, is shown below.

The region enclosed by the curve of f and the x-axis is rotated 360° about the x-axis. Find the volume of the solid formed.
2. Let $f(x)=x \ln \left(4-x^{2}\right)$, for $-2<x<2$. The graph of f is shown below.

The graph of f crosses the x-axis at $x=a, x=0$ and $x=b$.
(a) Find the value of a and of b.

The graph of f has a maximum value when $x=c$.
(b) Find the value of c.
(c) The region under the graph of f from $x=0$ to $x=c$ is rotated 360° about the x-axis. Find the volume of the solid formed.
(3)
(d) Let R be the region enclosed by the curve, the x-axis and the line $x=c$, between $x=a$ and x $=c$.

Find the area of R.
3. The graph of $y=\sqrt{x}$ between $x=0$ and $x=a$ is rotated 360° about the x-axis.

The volume of the solid formed is 32π. Find the value of a.
(Total 7 marks)
4. Let $f(x)=x(x-5)^{2}$, for $0 \leq x \leq 6$. The following diagram shows the graph of f.

Let R be the region enclosed by the x-axis and the curve of f.
(a) Find the area of R.
(b) Find the volume of the solid formed when R is rotated through 360° about the x-axis.
(c) The diagram below shows a part of the graph of a quadratic function $g(x)=x(a-x)$. The graph of g crosses the x-axis when $x=a$.

The area of the shaded region is equal to the area of R. Find the value of a.
5. Let $f(x)=\sqrt{x}$. Line L is the normal to the graph of f at the point $(4,2)$.
(a) Show that the equation of L is $y=-4 x+18$.
(b) Point A is the x-intercept of L. Find the x-coordinate of A.

In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L.

(c) Find an expression for the area of R.
(d) The region R is rotated 360° about the x-axis. Find the volume of the solid formed, giving your answer in terms of π.
6. Let $f: x \alpha \sin ^{3} x$.
(a) (i) Write down the range of the function f.
(ii) Consider $f(x)=1,0 \leq x \leq 2 \pi$. Write down the number of solutions to this equation. Justify your answer.
(b) Find $f^{\prime}(x)$, giving your answer in the form $a \sin ^{p} x \cos ^{q} x$ where $a, p, q \in \mathbb{Z}$.
(c) Let $g(x)=\sqrt{3} \sin x(\cos x)^{\frac{1}{2}}$ for $0 \leq x \leq \frac{\pi}{2}$. Find the volume generated when the curve of g is revolved through 2π about the x-axis.
7. Let $f(x)=x \cos (x-\sin x), 0 \leq x \leq 3$.
(a) Sketch the graph of f on the following set of axes.

(b) The graph of f intersects the x-axis when $x=a, a \neq 0$. Write down the value of a.
(c) The graph of f is revolved 360° about the x-axis from $x=0$ to $x=a$. Find the volume of the solid formed.
8. The function $f(x)$ is defined as $f(x)=3+\frac{1}{2 x-5}, x \neq \frac{5}{2}$.
(a) Sketch the curve of f for $-5 \leq x \leq 5$, showing the asymptotes.
(b) Using your sketch, write down
(i) the equation of each asymptote;
(ii) the value of the x-intercept;
(iii) the value of the y-intercept.
(c) The region enclosed by the curve of f, the x-axis, and the lines $x=3$ and $x=a$, is revolved through 360° about the x-axis. Let V be the volume of the solid formed.
(i) Find $\int\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x$.
(ii) Hence, given that $V=\pi\left(\frac{28}{3}+3 \ln 3\right)$, find the value of a.
9. Let $f(x)=p-\frac{3 x}{x^{2}-q^{2}}$, where $p, q \in \mathbb{R}^{+}$.

Part of the graph of f, including the asymptotes, is shown below.

(a) The equations of the asymptotes are $x=1, x=-1, y=2$. Write down the value of
(i) p;
(ii) q.
(b) Let R be the region bounded by the graph of f, the x-axis, and the y-axis.
(i) Find the negative x-intercept of f.
(ii) Hence find the volume obtained when R is revolved through 360° about the x-axis.
(c) (i) Show that $f^{\prime}(x)=\frac{3\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}$.
(ii) Hence, show that there are no maximum or minimum points on the graph of f.
(d) Let $g(x)=f^{\prime}(x)$. Let A be the area of the region enclosed by the graph of g and the x-axis, between $x=0$ and $x=a$, where $a>0$. Given that $A=2$, find the value of a.
10. Consider the function $f(x) \mathrm{e}^{(2 x-1)}+\left(\frac{5}{(2 x-1)}\right), x \neq \frac{1}{2}$.
(a) Sketch the curve of f for $-2 \leq x \leq 2$, including any asymptotes.
(b) (i) Write down the equation of the vertical asymptote of f.
(ii) Write down which one of the following expressions does not represent an area between the curve of f and the x-axis.

$$
\begin{aligned}
& \int_{1}^{2} f(x) \mathrm{d} x \\
& \int_{0}^{2} f(x) \mathrm{d} x
\end{aligned}
$$

(iii) Justify your answer.
(c) The region between the curve and the x-axis between $x=1$ and $x=1.5$ is rotated through 360° about the x-axis. Let V be the volume formed.
(i) Write down an expression to represent V.
(ii) Hence write down the value of V.
(d) Find $f^{\prime}(x)$.
(e) (i) Write down the value of x at the minimum point on the curve of f.
(ii) The equation $f(x)=k$ has no solutions for $p \leq k<q$. Write down the value of p and of q.
(Total 17 marks)
11. A part of the graph of $y=2 x-x^{2}$ is given in the diagram below.

The shaded region is revolved through 360° about the x-axis.
(a) Write down an expression for this volume of revolution.
(b) Calculate this volume.
12. Let $f(x)=-\frac{3}{4} x^{2}+x+4$.
(a) (i) Write down $f^{\prime}(x)$.
(ii) Find the equation of the normal to the curve of f at $(2,3)$.
(iii) This normal intersects the curve of f at $(2,3)$ and at one other point P . Find the x-coordinate of P .

Part of the graph of f is given below.

(b) Let R be the region under the curve of f from $x=-1$ to $x=2$.
(i) Write down an expression for the area of R.
(ii) Calculate this area.
(iii) The region R is revolved through 360° about the x-axis. Write down an expression for the volume of the solid formed.
(c) Find $\int_{1}^{k} f(x) \mathrm{d} x$, giving your answer in terms of k.
13. The shaded region in the diagram below is bounded by $f(x)=\sqrt{x}, x=a$, and the x-axis. The shaded region is revolved around the x-axis through 360°. The volume of the solid formed is 0.845π.

Find the value of a.
(Total 6 marks)
14. The diagram below shows the graphs of $f(x)=1+\mathrm{e}^{2 x}, g(x)=10 x+2,0 \leq x \leq 1.5$.

(a) (i) Write down an expression for the vertical distance p between the graphs of f and g.
(ii) Given that p has a maximum value for $0 \leq x \leq 1.5$, find the value of x at which this occurs.

The graph of $y=f(x)$ only is shown in the diagram below. When $x=a, y=5$.

(b) (i) Find $f^{-1}(x)$.
(ii) Hence show that $a=\ln 2$.
(c) The region shaded in the diagram is rotated through 360° about the x-axis. Write down an expression for the volume obtained.
15. The diagram shows part of the graph of $y=\mathrm{e}^{\frac{x}{2}}$.

(a) Find the coordinates of the point P, where the graph meets the y-axis.

The shaded region between the graph and the x-axis, bounded by $x=0$ and $x=\ln 2$, is rotated through 360° about the x-axis.
(b) Write down an integral which represents the volume of the solid obtained.
(c) Show that this volume is π.

