IB Questionbank Maths SL

SL Differentiation Kinematics

0 min
0 marks

1. (a) $v=1$

A1 N1 1
(b) (i) $\frac{\mathrm{d}}{\mathrm{d} t}(2 t)=2$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\cos 2 t)=-2 \sin 2 t
$$

Note: Award A1 for coefficient 2 and A1 for $-\sin 2 t$.
evidence of considering acceleration $=0$
e.g. $\frac{\mathrm{d} v}{\mathrm{~d} t}=0,2-2 \sin 2 t=0$
correct manipulation
A1
e.g. $\sin 2 k=1, \sin 2 t=1$
$2 k=\frac{\pi}{2}\left(\right.$ accept $\left.2 t=\frac{\pi}{2}\right)$
A1
$k=\frac{\pi}{4}$
AG N0
(ii) attempt to substitute $t=\frac{\pi}{4}$ into v
e.g. $2\left(\frac{\pi}{4}\right)+\cos \left(\frac{2 \pi}{4}\right)$
$v=\frac{\pi}{2}$
(c)

A1A1A2 N4
4
Notes: Award Al for y-intercept at (0, 1), Al for curve having zero gradient at $t=\frac{\pi}{4}$, A2 for shape that is concave down to the left of $\frac{\pi}{4}$ and concave up to the right of $\frac{\pi}{4}$. If a correct curve is drawn without indicating $t=\frac{\pi}{4}$, do not award the second A1 for the zero gradient, but award the final A2 if appropriate. Sketch need not be drawn to scale. Only essential features need to be clear.
(d) (i) correct expression

A2
e.g. $\int_{0}^{1}(2 t+\cos 2 t) \mathrm{d} t,\left[t^{2}+\frac{\sin 2 t}{2}\right]_{0}^{1}, 1+\frac{\sin 2}{2}, \int_{0}^{1} v \mathrm{~d} t$
(ii)

A1
3
Note: The line at $t=1$ needs to be clearly after $t=\frac{\pi}{4}$.
2. (a) $f(x)=-10(x+4)(x-6)$
(b) METHOD 1
attempting to find the x-coordinate of maximum point
(M1)
$e . g$. averaging the x-intercepts, sketch, $y^{\prime}=0$, axis of symmetry attempting to find the y-coordinate of maximum point
e.g. $k=-10(1+4)(1-6)$
$f(x)=-10(x-1)^{2}+250$
A1A1 N4 4

METHOD 2

attempt to expand $f(x)$
e.g. $-10\left(x^{2}-2 x-24\right)$
attempt to complete the square
e.g. $-10\left((x-1)^{2}-1-24\right)$
$f(x)=-10(x-1)^{2}+250$
A1A1 N4 4
(c) attempt to simplify
e.g. distributive property, $-10(x-1)(x-1)+250$
correct simplification
e.g. $-10\left(x^{2}-6 x+4 x-24\right),-10\left(x^{2}-2 x+1\right)+250$
$f(x)=240+20 x-10 x^{2}$
AG N0 2
(d) (i) valid approach
e.g. vertex of parabola, $v^{\prime}(t)=0$

$$
t=1
$$

(ii) recognizing $a(t)=v^{\prime}(t)$

A1A1

A1 N3 7
3. evidence of integrating the acceleration function
(M1)
e.g. $\int\left(\frac{1}{t}+3 \sin 2 t\right) \mathrm{d} t$
correct expression $\ln t-\frac{3}{2} \cos 2 t+c$
A1A1
evidence of substituting $(1,0)$
(M1)
e.g. $0=\ln 1-\frac{3}{2} \cos 2+c$
$c=-0.624\left(=\frac{3}{2} \cos 2-\ln 1\right.$ or $\left.\frac{3}{2} \cos 2\right)$
$v=\ln t-\frac{3}{2} \cos 2 t-0.624\left(=\ln t-\frac{3}{2} \cos 2 t+\frac{3}{2} \cos 2\right.$ or $\left.\ln t-\frac{3}{2} \cos 2 t+\frac{3}{2} \cos 2-\ln 1\right)$ (A1)
$v(5)=2.24$ (accept the exact answer $\ln 5-1.5 \cos 10+1.5 \cos 2)$
4. (a)

A1A1A1 N3
Note: Award A1 for approximately correct shape, Al for right endpoint at $(25,0)$ and Al for maximum point in circle.
(b) (i) recognizing that d is the area under the curve
(M1)
e.g. $\int v(t)$
correct expression in terms of t, with correct limits
A2 N3
e.g. $d=\int_{0}^{9}(15 \sqrt{t}-3 t) \mathrm{d} t, d=\int_{0}^{9} v \mathrm{~d} t$
(ii) $\quad d=148.5$ (m) (accept 149 to 3 sf$)$
5. (a)

Function	Graph
displacement	A
acceleration	B

(b) $t=3$

A2 N 2
[6]
6. Note: In this question, do not penalize absence of units.
(a)

$$
\text { (i) } \begin{aligned}
s & =\int(40-a t) \mathrm{d} t \\
s & =40 t-\frac{1}{2} a t^{2}+c
\end{aligned}
$$

$$
\begin{equation*}
\text { substituting } s=100 \text { when } t=0(c=100) \tag{M1}
\end{equation*}
$$

$$
s=40 t-\frac{1}{2} a t^{2}+100
$$

(ii) $s=40 t-\frac{1}{2} a t^{2}$
(b) (i) stops at station, so $v=0$

$$
\begin{equation*}
t=\frac{40}{a} \text { (seconds) } \tag{M1}
\end{equation*}
$$

(M1)
(A1)(A1)
A1 N5

A1 N1

A1 N2
(ii) evidence of choosing formula for s from (a) (ii)
(M1)
substituting $t=\frac{40}{a}$
e.g. $40 \times \frac{40}{a}-\frac{1}{2} a \times \frac{40^{2}}{a^{2}}$
setting up equation
M1
e.g. $500=s, 500=40 \times \frac{40}{a}-\frac{1}{2} a \times \frac{40^{2}}{a^{2}}, 500=\frac{1600}{a}-\frac{800}{a}$ evidence of simplification to an expression which obviously leads to $a=\frac{8}{5}$
e.g. $500 a=800,5=\frac{8}{a}, 1000 a=3200-1600$ $a=\frac{8}{5}$
(c) METHOD 1
$v=40-4 t$, stops when $v=0$
$40-4 t=0$
$t=10$
substituting into expression for s
(A1)
A1
$s=40 \times 10-\frac{1}{2} \times 4 \times 10^{2}$
$s=200$
since $200<500$ (allow $\boldsymbol{F T}$ on their s, if $s<500$)
train stops before the station

METHOD 2

from (b) $t=\frac{40}{4}=10$
A2
substituting into expression for s
e.g. $s=40 \times 10-\frac{1}{2} \times 4 \times 10^{2}$

M1
$s=200$
A1
since $200<500$,
train stops before the station

R1
AG N0

METHOD 3

$\begin{array}{lrl}a \text { is deceleration } & \text { A2 } & \\ 4>\frac{8}{5} & \text { A1 } & \\ \text { so stops in shorter time } & \text { (A1) } & \\ \text { so less distance travelled } & \text { R1 } & \\ \text { so stops before station } & \text { AG } & \text { N0 }\end{array}$
7. evidence of anti-differentiation
e.g. $s=\int\left(6 \mathrm{e}^{3 x}+4\right) \mathrm{d} x$
$s=2 \mathrm{e}^{3 t}+4 t+C$
substituting $t=0$,
$7=2+C$
$C=5$
$s=2 \mathrm{e}^{3 t}+4 t+5$
A1 N3
8. (a) (i) range of f is $[-1,1],(-1 \leq f(x) \leq 1)$

A2 N 2
(ii) $\sin ^{3} x=1 \Rightarrow \sin x=1$
justification for one solution on $[0,2 \pi]$
A1
R1
e.g. $x=\frac{\pi}{2}$, unit circle, sketch of $\sin x$

1 solution (seen anywhere)
A1 N1
(b) $f^{\prime}(x)=3 \sin ^{2} x \cos x$
(c) using $V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$

$$
\begin{align*}
V & =\int_{0}^{\frac{\pi}{2}} \pi\left(\sqrt{3} \sin x \cos ^{\frac{1}{2}} x\right)^{2} \mathrm{~d} x \tag{A1}\\
& =\pi \int_{0}^{\frac{\pi}{2}} 3 \sin ^{2} x \cos x \mathrm{~d} x \tag{A1}\\
V & =\pi\left[\sin ^{3} x\right]_{0}^{\frac{\pi}{2}}\left(=\pi\left(\sin ^{3}\left(\frac{\pi}{2}\right)-\sin ^{3} 0\right)\right)
\end{align*}
$$

evidence of using $\sin \frac{\pi}{2}=1$ and $\sin 0=0$
e.g. $\quad \pi(1-0)$
$V=\pi$
A1 N1
[14]
9. (a) substituting $t=0$

$$
\begin{aligned}
& \text { e.g. } a(0)=0+\cos 0 \\
& a(0)=1
\end{aligned}
$$

(b) evidence of integrating the acceleration function
e.g. $\int(2 t+\cos t) \mathrm{d} t$
correct expression $t^{2}+\sin t+c$
Note: If " $+c$ " is omitted, award no further marks.
evidence of substituting $(0,2)$ into indefinite integral
e.g. $2=0+\sin 0+c, c=2$
$v(t)=t^{2}+\sin t+2$
A1 N3
(c) $\int\left(t^{2}+\sin t+2\right) \mathrm{d} t=\frac{t^{3}}{3}-\cos t+2 t$

Note: Award A1 for each correct term.
evidence of using $v(3)-v(0)$ (M1)
correct substitution
e.g. $(9-\cos 3+6)-(0-\cos 0+0),(15-\cos 3)-(-1)$
$16-\cos 3($ accept $p=16, q=-1)$
(d) reference to motion, reference to first 3 seconds e.g. displacement in 3 seconds, distance travelled in 3 seconds
10. (a) $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$

$$
=-10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
$$

(b) $s=\int v \mathrm{~d} t$
$=50 t-5 t^{2}+c$
$40=50(0)-5(0)+c \Rightarrow c=40$
$s=50 t-5 t^{2}+40$
Note: Award (M1) and the first A1 in part (b) if c is missing, but do not award the final 2 marks.
11. Evidence of integration
$s=-0.5 \mathrm{e}^{-2 t}+6 t^{2}+c$
Substituting $t=0, s=2$
eg $2=-0.5+c$
$c=2.5$
$s=-0.5 \mathrm{e}^{-2 t}+6 t^{2}+2.5$
12. (a) Evidence of using $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
eg $3 \mathrm{e}^{3 t-2}$
$a(1)=3 \mathrm{e} \quad(=8.15)$
(b) Attempt to solve $\mathrm{e}^{3 t-2}=22.3$
$e g(3 t-2)(\ln \mathrm{e})=\ln 22.3$, sketch
$t=1.70$
(c) Evidence of using $s=\int v \mathrm{~d} t$ (limits not required)

$$
\begin{aligned}
& \text { e.g. } \int \mathrm{e}^{3 t-2} \mathrm{~d} t, \frac{1}{3}\left[\mathrm{e}^{3 t-2}\right]_{0}^{1} \\
& \frac{1}{3}\left(\mathrm{e}^{1}-\mathrm{e}^{-2}\right) \quad\left[=\frac{1}{3}\left(\mathrm{e}-\mathrm{e}^{-2}\right)=0.861\right]
\end{aligned}
$$

A1 N1
[6]
13. Finding anti-derivative of $4 t^{3}-2 t$
$s=t^{4}-t^{2}+c$
Substituting correctly $8=2^{4}-2^{2}+c$
A1A1
A1
Note: Exception to the $\boldsymbol{F T}$ rule. Allow full $\boldsymbol{F T}$ on incorrect integration.
$c=-4$
$s=t^{4}-t^{2}-4$
14. (a) $\quad S_{\min }=6.05 \quad(\operatorname{accept}(1,6.05))$

A1 N1
(b) $\frac{\mathrm{d} s}{\mathrm{~d} t}=-15 \sin 3 t+2 t$
$a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$
$a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=-45 \cos 3 t+2 \quad$ (Exception to $\boldsymbol{F T}$ rule : allow $\boldsymbol{F} \boldsymbol{T}$ from $\left.\frac{\mathrm{d} s}{\mathrm{~d} t}\right)$

A1
(M1)

A1 N2

(c) EITHER

Maximum value of a when $\cos 3 t$ is minimum ie $\cos 3 t=-1$
OR
At maximum $\frac{\mathrm{d} a}{\mathrm{~d} t}=0 \quad(135 \sin 3 t=0)$

THEN

$$
t=\frac{\pi}{3} \quad\left(\text { accept } 1.05 ; \text { do not accept } 60^{\circ}\right)
$$

A1 N 2
15. $s=\int v \mathrm{~d} t$

$$
s=\frac{1}{2} \mathrm{e}^{2 t-1}+c
$$

Substituting $t=0.5$

$$
\begin{align*}
\frac{1}{2}+c & =10 \\
c & =9.5 \tag{A1}
\end{align*}
$$

Substituting $t=1$

$$
s=\frac{1}{2} \mathrm{e}+9.5(=10.9 \text { to } 3 s . f .)
$$

A1 N3
16. (a) $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
(M1)

$$
=-10
$$

(b) $s=\int v d t$
$=50 t-5 t^{2}+c$
$40=50(0)-5(0)+c \Rightarrow c=40$
$s=50 t-5 t^{2}+40$
(M1)
A1
A1
A1 3

Note: Award (M1) and the first (Al) in part (b) if c is missing, but do not award the final 2 marks.
17. (a) $s=25 t-\frac{4}{3} t^{3}+c$

Note: Award no further marks if " c " is missing.
Substituting $s=10$ and $t=3$
$10=25 \times 3-\frac{4}{3}(3)^{3}+c$
$10=75-36+c$
$c=-29$
$s=25 t-\frac{4}{3} t^{3}-29$
(b) METHOD 1
s is a maximum when $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=0$ (may be implied)
$25-4 t^{2}=0$

$$
\begin{equation*}
t^{2}=\frac{25}{4} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
t=\frac{5}{2} \tag{A1}
\end{equation*}
$$

METHOD 2

Using maximum of $s\left(12 \frac{2}{3}\right.$, may be implied)
$25 t-\frac{4}{3} t^{3}-29=12 \frac{2}{3}$
$\mathrm{t}=2.5$
(A1) (N2)
(c) $25 t-\frac{4}{3} t^{3}-29>0 \quad$ (accept equation)

$$
m=1.27, n=3.55
$$

(A1)(A1) (N3)
18. (a) $d=\int_{0}^{4}\left(4 t+5-5 \mathrm{e}^{-t}\right) \mathrm{d} t$

Note: Award (M1) for f, (A1) for both limits, (A1) for $4 t+5$ $5 e^{-t}$
(b) $\quad d=\left[2 t^{2}+5 t+5 \mathrm{e}^{-t}\right]_{0}^{4}$

Note: Award (A1) for $2 t^{2}+5 t$, (A1) for $5 e^{-t}$.

$$
\begin{align*}
& =\left(32+20+5 \mathrm{e}^{-4}\right)-(5) \\
& =47+5 \mathrm{e}^{-4}(47.1,3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

19. (a) Velocity is $\frac{\mathrm{d} s}{\mathrm{~d} t}$.

$$
\begin{equation*}
\frac{\mathrm{d} s}{\mathrm{~d} t}=10-t \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
10\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \tag{A1}
\end{equation*}
$$

(b) The velocity is zero when $\frac{\mathrm{d} s}{\mathrm{~d} t}=0$

$$
\begin{align*}
10-t & =0 \tag{M1}\\
t & =10(\mathrm{secs}) \tag{A1}
\end{align*}
$$

(c) $s=50$ (metres)
(A1) (C1)
Note: Do not penalize absence of units.
20. (a) (i) When $t=0, v=50+50 \mathrm{e}^{0}$

$$
\begin{equation*}
=100 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{equation*}
$$

(ii) When $t=4, v=50+50 \mathrm{e}^{-2}$

$$
\begin{equation*}
=56.8 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{equation*}
$$

(b) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t} \Rightarrow s=\int v \mathrm{~d} t$

$$
\begin{equation*}
\int_{0}^{4}\left(50+50 \mathrm{e}^{-0.5 t}\right) \mathrm{d} t \tag{A1}
\end{equation*}
$$

Note: Award (A1) for each limit in the correct position and (Al) for the function.
(c) Distance travelled in 4 seconds $=\int_{0}^{4}\left(50+50 \mathrm{e}^{-0.5 t}\right) \mathrm{d} t$

$$
\begin{align*}
& =\left[50 t-100 \mathrm{e}^{-0.5 t}\right]_{0}^{4} \tag{A1}\\
& =\left(200-100 \mathrm{e}^{-2}\right)-\left(0-100 \mathrm{e}^{0}\right) \\
& =286 \mathrm{~m}(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

Note: Award first (A1) for [50t - $\left.100 e^{-0.5 t}\right]$, ie limits not required.

OR

Distance travelled in 4 seconds $=286 \mathrm{~m}(3 \mathrm{sf})$
(d)

Notes: Award (A1) for the exponential part, (A1) for the straight line through (11, 0),
Award (A1) for indication of time on x-axis and velocity on y-axis,
(A1) for scale on x-axis and y-axis.
Award (A1) for marking the point where $t=4$.
(e) Constant rate $=\frac{56.8}{7}$

$$
\begin{equation*}
=8.11 \mathrm{~m} \mathrm{~s}^{-2} \tag{A1}
\end{equation*}
$$

Note: Award (M1)(A0) for-8.11.
(f) \quad distance $=\frac{1}{2}(7)(56.8)$

Note: Do not award ft in parts (e) and (f) if candidate has not used a straight line for $t=4$ to $t=11$ or if they continue the exponential beyond $t=4$.
21. (a) $\frac{\mathrm{d} s}{\mathrm{~d} t}=30-a t=>s=30 t-a \frac{t^{2}}{2}+C$
(A1)(A1)(A1)
Note: Award (A1) for 30t, (A1) for $a \frac{t^{2}}{2}$, (A1) for C.

$$
\begin{align*}
& t=0 \Rightarrow s=30(0)-a \frac{\left(0^{2}\right)}{2}+C=0+C=>C=0 \tag{M1}\\
& \Rightarrow s=30 t-\frac{1}{2} a t^{2} \tag{A1}
\end{align*}
$$

(b) (i) vel $=30-5(0)=30 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) Train will stop when $0=30-5 t \Rightarrow t=6$

Distance travelled $=30 t-\frac{1}{2} a t^{2}$
$=30(6)-\frac{1}{2}(5)\left(6^{2}\right)$
$=90 \mathrm{~m}$
$90<200=>$ train stops before station.
(c) (i) $0=30-a t \Rightarrow t=\frac{30}{a}$
(ii) $30\left(\frac{30}{a}\right)-\frac{1}{2}(a)\left(\frac{30}{a}\right)^{2}=200$

Note: Award (M1) for substituting $\frac{30}{a}$, (Ml) for setting equal to 200.
$\Rightarrow \frac{900}{a}-\frac{450}{a}=\frac{450}{a}=200$
$\Rightarrow \mathrm{a}=\frac{450}{200}=\frac{9}{4}=2.25 \mathrm{~m} \mathrm{~s}^{-2}$
(A1) 5
Note: Do not penalize lack of units in answers.
[15]
22. (a) (i) $v(0)=50-50 \mathrm{e}^{0}=0$
(ii) $\quad v(10)=50-50 \mathrm{e}^{-2}=43.2$
(A1) 2
(b) (i) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=-50\left(-0.2 \mathrm{e}^{-0.2 t}\right)$
$=10 \mathrm{e}^{-0.2 t}$
(ii) $a(0)=10 \mathrm{e}^{0}=10$
(c) (i) $t \rightarrow \infty \Rightarrow v \rightarrow 50$
(ii) $t \rightarrow \infty \Rightarrow a \rightarrow 0$
(iii) when $a=0, v$ is constant at 50
(R1) 3
(d) (i) $y=\int v \mathrm{~d} t$
(M1)
$=50 t-\frac{\mathrm{e}^{-0.2 t}}{-0.2}+k$
$=50 t+250 \mathrm{e}^{-0.2 t}+k$
(ii) $0=50(0)+250 \mathrm{e}^{0}+k=250+k$
$\Rightarrow k=-250$
(iii) Solve $250=50 t+250 \mathrm{e}^{-0.2 t}-250$
(G2) 7
[15]
23. (a) When $t=0$,

$$
h=2+20 \times 0-5 \times 0^{2}=2 \quad h=2
$$

(b) When $t=1$,
$h=2+20 \times 1-5 \times 1^{2}$
$=17$
(M1)
(A1) 2
(c) (i) $h=17 \Rightarrow 17=2+20 t-5 t^{2}$
(ii) $5 t^{2}-20 t+15=0$
$\Leftrightarrow 5\left(t^{2}-4 t+3\right)=0$
$\Leftrightarrow(t-3)(t-1)=0$
Note: Award (M1) for factorizing or using the formula

$$
\begin{equation*}
\Leftrightarrow t=3 \text { or } 1 \tag{A1}
\end{equation*}
$$

Note: Award (A1) for $t=3$
(d) (i) $h=2+20 t-5 t^{2}$
$\Rightarrow \frac{\mathrm{d} h}{\mathrm{~d} t}=0+20-10 t$
$=20-10 t$
(A1)(A1)
(ii) $t=0$
$\Rightarrow \frac{\mathrm{d} h}{\mathrm{~d} t}=20-10 \times 0=20$
(iii) $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$

$$
\begin{equation*}
\Leftrightarrow 20-10 t=0 \Leftrightarrow t=2 \tag{M1}
\end{equation*}
$$

$$
\text { (iv) } \begin{align*}
& t=2 \tag{M1}\\
& \quad \Rightarrow h=2+20 \times 2-5 \times 2^{2}=22 \Rightarrow h=22
\end{align*}
$$

(A1) 7
24. (a) (i) $t=0 s=800$

$$
\begin{align*}
& t=5 s=800+500-100=1200 \tag{M1}\\
& \text { distance in first } 5 \text { seconds }=1200-800
\end{align*}
$$

$$
\begin{equation*}
=400 \mathrm{~m} \tag{A1}
\end{equation*}
$$

(ii) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}=100-8 t$

At $t=5$, velocity $=100-40$

$$
\begin{equation*}
=60 \mathrm{~m} \mathrm{~s}^{-1} \tag{M1}
\end{equation*}
$$

(iii) Velocity $=36 \mathrm{~m} \mathrm{~s}^{-1} \Rightarrow 100-8 t=36$ $t=8$ seconds after touchdown.
(A1) 2
(iv) When $t=8, s=800+100(8)-4(8)^{2}$
(A1) 3
(b) If it touches down at P , it has $2000-1344=656 \mathrm{~m}$ to stop.

To come to rest, $100-8 t=0 \Rightarrow t=12.5 \mathrm{~s}$
Distance covered in $12.5 s=100(12.5)-4(12.5)^{2}$

$$
\begin{align*}
& =1250-625 \tag{M1}\\
& =625 \tag{A1}
\end{align*}
$$

Since $625<656$, it can stop safely.
(R1) 5
[15]
25. (a) $t=2 \square h=50-5\left(2^{2}\right)=50-20$

$$
\begin{equation*}
=30 \tag{A1}
\end{equation*}
$$

OR

$$
\begin{aligned}
h & =90-40(2)+5\left(2^{2}\right) \\
& =30
\end{aligned}
$$

(A1) 1
(b)

(A4) 4
Note: Award (A1) for marked scales on each axis, (A1) for each section of the curve.
(c) (i) $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(50-5 t^{2}\right)$

$$
\begin{equation*}
=0-10 t=-10 t \tag{A1}
\end{equation*}
$$

(ii) $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(90-40 t+5 t^{2}\right)$

$$
\begin{equation*}
=0-40+10 t=-40+10 t \tag{A1}
\end{equation*}
$$

(d) When $t=2$ (i) $\quad \frac{\mathrm{d} h}{\mathrm{~d} t}=-10(2)$ or $\frac{\mathrm{d} h}{\mathrm{~d} t}=-40+10 \times 2$

$$
\begin{equation*}
=-20 \quad=-20 \tag{M1}
\end{equation*}
$$

(e) $\quad \frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Rightarrow-10 t=0(0 \leq t \leq 2) \quad$ or $-40+10 t=0(2 \leq t \leq 5)$

$$
t=0 \quad \text { or } \quad t=4 \quad \text { (A1)(A1) } 3
$$

(f) When $t=4$

$$
\begin{equation*}
h=90-40(4)+5\left(4^{2}\right) \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=90-160+80 \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=10 \tag{A1}
\end{equation*}
$$

