IB Questionbank Maths SL

Binomial Distribution Answers

0 min
0 marks

1. (a) $\mathrm{E}(X)=2$
(b) evidence of appropriate approach involving binomial
e.g. $\binom{10}{3}(0.2)^{3},(0.2)^{3}(0.8)^{7}, X \sim B(10,0.2)$
$\mathrm{P}(X=3)=0.201$
A1 N2
(c) METHOD 1
$\mathrm{P}(X \leq 3)=0.10737+0.26844+0.30199+0.20133(=0.87912 \ldots)$
evidence of using the complement (seen anywhere)
e.g. 1 - any probability, $\mathrm{P}(X>3)=1-\mathrm{P}(X \leq 3)$
$\mathrm{P}(X>3)=0.121$
A1 N 2

METHOD 2

recognizing that $\mathrm{P}(X>3)=\mathrm{P}(X \geq 4)$
e.g. summing probabilities from $X=4$ to $X=10$
correct expression or values
e.g. $\sum_{r=4}^{10}\binom{10}{r}(0.2)^{10-r}(0.8)^{r}$
$0.08808+0.02642+0.005505+0.000786+0.0000737+0.000004+0.0000001$
$\mathrm{P}(X>3)=0.121$
2. (a) evidence of binomial distribution (may be seen in parts (b) or (c))
(M1)
e.g. $n p, 100 \times 0.04$
mean $=4$
(b) $\mathrm{P}(X=6)=\binom{100}{6}(0.04)^{6}(0.96)^{94}$

$$
=0.105
$$

(A1)

A1 N2
(c) for evidence of appropriate approach
e.g. complement, $1-\mathrm{P}(X=0)$

$$
\begin{align*}
& \mathrm{P}(X=0)=(0.96)^{100}=0.01687 \ldots \tag{A1}\\
& \mathrm{P}(\mathrm{X} \geq 1)=0.983
\end{align*}
$$

A1 N2

[7]

3. (a) evidence of using binomial probability
e.g. $\mathrm{P}(X=2)=\binom{7}{2}(0.18)^{2}(0.82)^{5}$
$\mathrm{P}(X=2)=0.252$
(b) METHOD 1
evidence of using the complement
e.g. $1-(\mathrm{P}(X \leq 1))$
$\mathrm{P}(X \leq 1)=0.632$
$\mathrm{P}(X \geq 2)=0.368$

METHOD 2

evidence of attempting to sum probabilities M1
e.g. $\mathrm{P}(2$ heads $)+\mathrm{P}(3$ heads $)+\ldots+\mathrm{P}(7$ heads $), 0.252+0.0923+\ldots$
correct values for each probability
e.g. $0.252+0.0923+0.0203+0.00267+0.0002+0.0000061$
$\mathrm{P}(X \geq 2)=0.368$

A1 N2
[5]
4. (a) (i) Attempt to find $\mathrm{P}(3 H)=\left(\frac{1}{3}\right)^{3}$

$$
=\frac{1}{27}
$$

(ii) Attempt to find $\mathrm{P}(2 H, 1 T)$
(M1)

$$
\begin{aligned}
& =3\left(\frac{1}{3}\right)^{2} \frac{2}{3} \\
& =\frac{2}{9}
\end{aligned}
$$

A1 N2
(b) (i) Evidence of using $n p\left(\frac{1}{3} \times 12\right)$
expected number of heads $=4$
(ii) 4 heads, so 8 tails
$\mathrm{E}($ winnings $)=4 \times 10-8 \times 6(=40-48)$
$=-\$ 8$
(A1)
(M1)
A1 N1
[10]
5. (a) $\quad X \sim \mathrm{~B}(100,0.02)$
$\mathrm{E}(X)=100 \times 0.02=2$
A1 N1
(b) $\quad \mathrm{P}(X=3)=\binom{100}{3}(0.02)^{3}(0.98)^{97}$
$=0.182$
(c) METHOD 1

$$
\begin{aligned}
& \mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)=1-(\mathrm{P}(X=0)+\mathrm{P}(X=1)) \\
& =1-\left((0.98)^{100}+100(0.02)(0.98)^{99}\right) \\
& =0.597
\end{aligned}
$$

METHOD 2

$\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)$
$=1-0.40327$
$=0.597$
Note: Award marks as follows for finding $P(X \geq 1)$, if working shown.
$\mathrm{P}(X \geq 1)$
A0
$=1-\mathrm{P}(X \leq 2)=1-0.67668$
$=0.323$
(M1)
(A1)
A1 N2
(M1)
A1 N2
6. (a)

A1A1A1 N3
Note: Award Al for each pair of complementary probabilities.
(b) $\mathrm{P}(E)=\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6}\left(=\frac{5}{36}+\frac{5}{36}\right)$

$$
=\frac{10}{36}\left(=\frac{5}{18} \text { or } 0.278\right)
$$

A1 N3
(c) Evidence of recognizing the binomial distribution

$$
\begin{align*}
& \text { eg } X \sim \mathrm{~B}\left(5, \frac{5}{18}\right) \text { or } p=\frac{5}{18}, q=\frac{13}{18} \\
& \mathrm{P}(X=3)=\binom{5}{3}\left(\frac{5}{18}\right)^{3}\left(\frac{13}{18}\right)^{2} \quad \text { (or other evidence of correct setup) } \tag{A1}\\
&=0.112
\end{align*}
$$

(d) METHOD 1

Evidence of using the complement M1
eg $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)$
Correct value $1-0.865$

$$
=0.135
$$

A1 N2

METHOD 2

Evidence of adding correct probabilities
M1
eg $\mathrm{P}(X \geq 3)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$
Correct values $0.1118+0.02150+0.001654$

$$
=0.135
$$

7.

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.
$W \sim \mathrm{~N}\left(2.5,0.3^{2}\right)$
(a) (i) $z=-1.67$ (accept 1.67)
$\mathrm{P}(W<2)=0.0478 \quad$ (accept answers between 0.0475 and 0.0485)
(ii) $z=1$
$\mathrm{P}(W>2.8)=0.159$
A1 N2
(iii)

A1A1 N2
Note: Award Al for a vertical line to left of mean and shading to left, Al for vertical line to right of mean and shading to right.
(iv) Evidence of appropriate calculation

M1

AG N0
eg $1-(0.047790+0.15866), 0.8413-0.0478$
$P=0.7936$
Note: The final value may vary depending on what level of accuracy is used.
Accept their value in subsequent parts.
(b) (i) $X \sim \mathrm{~B}(10,0.7935 \ldots)$

Evidence of calculation
M1

$$
\operatorname{eg} \mathrm{P}(X=10)=(0.7935 \ldots)^{10}
$$

$$
\mathrm{P}(X=10)=0.0990(3 \mathrm{sf})
$$

(ii) METHOD 1

Recognizing $X \sim \mathrm{~B}(10,0.7935$...) (may be seen in (i))
$\mathrm{P}(X \leq 6)=0.1325 \ldots($ or $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=6))$
evidence of using the complement
eg $\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6), \mathrm{P}(X \geq 7)=1-\mathrm{P}(X<7)$
$\mathrm{P}(X \geq 7)=0.867$
A1 N3

METHOD 2

Recognizing $X \sim \mathrm{~B}(10,0.7935$...) (may be seen in (i))
For adding terms from $\mathrm{P}(X=7)$ to $\mathrm{P}(X=10)$

$$
\begin{aligned}
\mathrm{P}(X \geq 7) & =0.209235+0.301604+0.257629+0.099030 \\
& =0.867
\end{aligned}
$$

8. METHOD 1 Use of the GDC

(a) Evidence of using the binomial facility,
that is set up with $P=\frac{1}{2}$ and $n=5$.
$\mathrm{P}(X=3)=0.3125 \quad\left(0.313, \frac{5}{16}\right)$
A2
N2
(b) Evidence of set up, with $1-\mathrm{P}(X=0)$
$=0.969\left(=\frac{31}{32}\right)$
N2

METHOD 2 Use of the formula

(a) Evidence of binomial formula

$$
\begin{aligned}
\mathrm{P}(X=3) & =\binom{5}{3}\binom{1}{2}^{5} \\
& =\frac{5}{16}(=0.313)
\end{aligned}
$$

(b) METHOD 1
$\mathrm{P}($ at least one head $)=1-\mathrm{P}(X=0)$
(M1)

A1

A1 N2

METHOD 2

$\mathrm{P}($ at least one head $)=\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)+\mathrm{P}(X=4)$
$+\mathrm{P}(X=5)$
9. (a) $X \sim B(100,0.02)$
$E(X)=100 \times 0.02=2$
A1 1
(b) $\quad P(X=3)=\binom{100}{3}(0.02)^{3}(0.98)^{97}$

$$
=0.182
$$

A1 2
(c) METHOD 1
$\mathrm{P}(X>1)=1-\mathrm{P}(X \leq 1)=1-(\mathrm{P}(X=0)+\mathrm{P}(X=1)$
$=1-\left((0.98)^{100}+100(0.02)(0.98)^{99}\right)$
$=0.597$

METHOD 2

10. $p($ Red $)=\frac{35}{40}=\frac{7}{8} \quad p($ Black $)=\frac{5}{40}=\frac{1}{8}$
(a) \quad (i) $\quad p$ (one black) $=\binom{8}{1}\left(\frac{1}{8}\right)^{1}\left(\frac{7}{8}\right)^{7}$

$$
=0.393 \text { to } 3 \mathrm{sf}
$$

(M1)(A1)
(A1) 3
(ii) $\quad p$ (at least one black) $=1-p($ none $)$

$$
\begin{align*}
& =1-\binom{8}{0}\left(\frac{1}{8}\right)^{0}\left(\frac{7}{8}\right)^{8} \tag{A1}\\
& =1-0.344 \\
& =0.656 \tag{A1}
\end{align*}
$$

(b) 400 draws: expected number of blacks $=\frac{400}{8}$

$$
\begin{equation*}
=50 \tag{M1}
\end{equation*}
$$

(A1) 2
[8]
11. (a) $p(4$ heads $)=\binom{8}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{8-4}$
$=\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} \times\left(\frac{1}{2}\right)^{8}$
$=\frac{70}{256} \cong 0.273(3 \mathrm{sf})$
(A1) 2
(b) $\quad p(3$ heads $)=\binom{8}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{8-3}=\frac{8 \times 7 \times 6}{1 \times 2 \times 3} \times\left(\frac{1}{2}\right)^{8}$
$=\frac{56}{256} \cong 0.219(3 \mathrm{sf})$
(c) $\quad p$ (5 heads) $=p$ (3 heads) (by symmetry)
$p(3$ or 4 or 5 heads $)=p(4)+2 p(3)$
$=\frac{70+2 \times 56}{256}=\frac{182}{256}$
≈ 0.711 (3 sf)
(A1) 3

