IB Questionbank Maths SL

Binomial Distribution Answers

0 min 0 marks

[6]

.

1.	(a)	$\mathrm{E}(X)=2$	A1	N1
	(b)	evidence of appropriate approach involving binomial e.g. $\binom{10}{3}(0.2)^3$, $(0.2)^3(0.8)^7$, $X \sim B(10, 0.2)$	(M1)	
		P(X = 3) = 0.201	A1	N2
	(c)	METHOD 1		
		$P(X \le 3) = 0.10737 + 0.26844 + 0.30199 + 0.20133 (= 0.87912)$ evidence of using the complement (seen anywhere) <i>e.g.</i> 1 – any probability, $P(X > 3) = 1 - P(X \le 3)$	(A1) (M1)	
		P(X > 3) = 0.121	A1	N2
		METHOD 2		
		recognizing that $P(X > 3) = P(X \ge 4)$ <i>e.g.</i> summing probabilities from $X = 4$ to $X = 10$	(M1)	
		correct expression or values <i>e.g.</i> $\sum_{r=4}^{10} {10 \choose r} (0.2)^{10-r} (0.8)^r$	(A1)	
		0.08808 + 0.02642 + 0.005505 + 0.000786 + 0.0000737 + 0.000004 + 0.000004	0.0000001	
		P(X > 3) = 0.121	A1	N2

2.	(a)	evidence of binomial distribution (may be seen in parts (b) or (c)) <i>e.g.</i> np , 100×0.04	(M1)	
		mean = 4	A1	N2

(b)
$$P(X = 6) = {\binom{100}{6}} (0.04)^6 (0.96)^{94}$$
 (A1)

(c)for evidence of appropriate approach
e.g. complement, 1 - P(X = 0)(M1) $P(X = 0) = (0.96)^{100} = 0.01687...$ (A1)

$$P(X \ge 1) = 0.983$$
 A1 N2

[7]

(a)	evidence of using binomial probability	(M1)	
	<i>e.g.</i> $P(X = 2) = {\binom{7}{2}} (0.18)^2 (0.82)^5$		
	P(X = 2) = 0.252	A1 N	V 2

(b) METHOD 1

3.

evidence of using the complement	M1	
<i>e.g.</i> $1 - (P(X \le 1))$		
$P(X \le 1) = 0.632$	(A1)	
$P(X \ge 2) = 0.368$	A1	N2

METHOD 2

evidence of attempting to sum probabilities e.g. $P(2 \text{ heads}) + P(3 \text{ heads}) + + P(7 \text{ heads}), 0.252 + 0.0923 +$	M1		
correct values for each probability $e = 0.252 \pm 0.0923 \pm 0.0203 \pm 0.00267 \pm 0.0002 \pm 0.000061$	(A1)		
$P(X \ge 2) = 0.368$	A1	N2	

[5]

4. (a) (i) Attempt to find P(3*H*) =
$$\left(\frac{1}{3}\right)^3$$
 (M1)

$$=\frac{1}{27}$$
A1 N2

$$= 3\left(\frac{1}{3}\right)^2 \frac{2}{3}$$
 A1

$$=\frac{2}{9}$$
 A1 N2

(b) (i) Evidence of using
$$np\left(\frac{1}{3} \times 12\right)$$
 (M1)
expected number of heads = 4 A1 N2

expected number of heads = 4A1

(ii) 4 heads, so 8 tails

$$E(\text{winnings}) = 4 \times 10 - 8 \times 6 (= 40 - 48)$$

 $= -\$ 8$
(A1)
(M1)
A1 N1
[10]

5. (a)
$$X \sim B(100, 0.02)$$

 $E(X) = 100 \times 0.02 = 2$ A1 N1

(b)
$$P(X = 3) = {\binom{100}{3}} (0.02)^3 (0.98)^{97}$$
 (M1)
= 0.182 A1 N2

$$= 0.182$$

METHOD 1 (c)

$P(X > 1) = 1 - P(X \le 1) = 1 - (P(X = 0) + P(X = 1))$	M 1	
$= 1 - ((0.98)^{100} + 100(0.02)(0.98)^{99})$	(M1)	
= 0.597	A1	N2

METHOD 2

$P(X > 1) = 1 - P(X \le 1)$	(M1)	
= 1 - 0.40327	(A1)	
= 0.597	A1	N2

Note: Award marks as follows for finding $P(X \ge 1)$, if working shown.

$P(X \ge 1)$	A0	
$= 1 - P(X \le 2) = 1 - 0.67668$	M1(FT)	
= 0.323	A1(FT)	N0

A1A1A1 N3

Note: Award A1 for **each pair** of complementary probabilities.

(b)
$$P(E) = \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} \left(= \frac{5}{36} + \frac{5}{36} \right)$$
 (A2)

$$= \frac{10}{36} \left(= \frac{5}{18} \text{ or } 0.278 \right)$$
 A1 N3

four

(c) Evidence of recognizing the binomial distribution (M1)

$$eg X \sim B\left(5, \frac{5}{18}\right) \text{ or } p = \frac{5}{18}, q = \frac{13}{18}$$

$$P(X = 3) = {\binom{5}{3}} \left(\frac{5}{18}\right)^3 \left(\frac{13}{18}\right)^2 \text{ (or other evidence of correct setup)}$$
(A1)
$$= 0.112$$
A1 N3

6. (a)

(d) METHOD 1

Evidence of using the complement	M1		
$eg \ \mathbf{P}(X \ge 3) = 1 - \mathbf{P}(X \le 2)$			
Correct value $1 - 0.865$	(A1)		
= 0.135	A1	N2	
METHOD 2			
Evidence of adding correct probabilities	M1		
$eg P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$			
Correct values $0.1118 + 0.02150 + 0.001654$	(A1)		
= 0.135	A1	N2	
			[12]

7.

Note: Candidates may be using tables in this question, which leads to a variety of values. Accept reasonable answers that are consistent with working shown.

 $W \sim N(2.5, 0.3^2)$

(a)	(i)	z = -1.67 (accept)	1.67)	(A1)	
		P(W < 2) = 0.0478 0.0485)	(accept answers between 0.0475 and	A1	N2
	(ii)	z = 1		(A1)	
		P(W > 2.8) = 0.159		A1	N2

(iii)

A1A1 N2

Note: Award A1 for a vertical line to left of mean and shading to left, A1 for vertical line to right of mean and shading to right.

- (iv)
 Evidence of appropriate calculation
 M1

 $eg \ 1 (0.047790 + 0.15866), \ 0.8413 0.0478$ AG
 N0

 P = 0.7936 AG
 N0
 - *Note:* The final value may vary depending on what level of accuracy is used. Accept their value in subsequent parts.

(b)	(i)	<i>X</i> ~ B(10, 0.7935)			
		Evidence of calculation	M1		
		$eg P(X = 10) = (0.7935)^{10}$			
		P(X = 10) = 0.0990 (3 sf)	A1	N1	
	(ii)	METHOD 1			
		Recognizing $X \sim B(10, 0.7935)$ (may be seen in (i))	(M1)		
		$P(X \le 6) = 0.1325$ (or $P(X = 1) + + P(X = 6)$)	(A1)		
		evidence of using the complement	(M1)		
		$eg P(X \ge 7) = 1 - P(X \le 6), P(X \ge 7) = 1 - P(X < 7)$			
		$P(X \ge 7) = 0.867$	A1	N3	
		METHOD 2			
		Recognizing $X \sim B(10, 0.7935)$ (may be seen in (i))	(M1)		
		For adding terms from $P(X = 7)$ to $P(X = 10)$	(M1)		
		$P(X \ge 7) = 0.209235 + 0.301604 + 0.257629 + 0.099030$	(A1)		
		= 0.867	A1	N3	
					[13]

8. METHOD 1 Use of the GDC

(a)	Evidence of using the binomial facility,	M1	
	that is set up with $P = \frac{1}{2}$ and $n = 5$.		
	$P(X=3) = 0.3125 \left(0.313, \frac{5}{16}\right)$	A2	N2

(b) Evidence of set up, with 1 - P(X = 0) M1

$$=0.969 \left(=\frac{31}{32}\right)$$
A2 N2

METHOD 2 Use of the formula

(a) Evidence of binomial formula (M1)

$$P(X=3) = {\binom{5}{3}} {\binom{1}{2}}^5$$
A1

$$=\frac{5}{16}$$
 (=0.313) A1 N2

(b) METHOD 1

 $P(\text{at least one head}) = 1 - P(X = 0) \tag{M1}$

$$=1-\left(\frac{1}{2}\right)^5$$
A1

$$=\frac{31}{32}$$
 (=0.969) A1 N2

METHOD 2

P(at least one head) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) (M1) = 0.15625 + 0.3125 + 0.3125 + 0.15625 + 0.03125 A1 = 0.969 A1 N2

9. (a)
$$X \sim B(100,0.02)$$

 $E(X) = 100 \times 0.02 = 2$ A1 1

(b)
$$P(X=3) = {\binom{100}{3}} (0.02)^3 (0.98)^{97}$$
 (M1)

(c) METHOD 1

$P(X > 1) = 1 - P(X \le 1) = 1 - (P(X = 0) + P(X = 1))$	M1	
$= 1 - ((0.98)^{100} + 100(0.02)(0.98)^{99})$	(M1)	
= 0.597	A1	2

METHOD 2

$P(X > 1) = 1 - P(X \le 1)$	(M1)	
= 1 - 0.40327	(A1)	
= 0.597	A1	2
Note : Award marks as follows for finding $P(X > 1)$, if working shown.		
$P(X \ge 1)$	A0	
= 1 - P(X < 2) = 1 - 0.67668 - 0.323	M1(ft)	2
- 0.325	111(11)	4

[6]

[6]

10.
$$p(\text{Red}) = \frac{35}{40} = \frac{7}{8}$$
 $p(\text{Black}) = \frac{5}{40} = \frac{1}{8}$
(a) (i) $p(\text{one black}) = {\binom{8}{1}} {\left(\frac{1}{8}\right)^1} {\left(\frac{7}{8}\right)^7}$ (M1)(A1)
 $= 0.393 \text{ to } 3 \text{ sf}$ (A1) 3

(ii)
$$p(\text{at least one black}) = 1 - p(\text{none})$$
 (M1)
= $1 - {\binom{8}{0}} {\left(\frac{1}{8}\right)^0} {\left(\frac{7}{8}\right)^8}$ (A1)
= $1 - 0.344$
= 0.656 (A1)

(b) 400 draws: expected number of blacks =
$$\frac{400}{8}$$
 (M1)
= 50 (A1) 2

3

11. (a)
$$p(4 \text{ heads}) = {\binom{8}{4}} {\left(\frac{1}{2}\right)^4} {\left(\frac{1}{2}\right)^{8-4}}$$
 (M1)
$$= \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} \times {\left(\frac{1}{2}\right)^8}$$
$$= \frac{70}{256} \approx 0.273 \text{ (3 sf)}$$
(A1) 2

(b)
$$p (3 \text{ heads}) = {\binom{8}{3}} {\left(\frac{1}{2}\right)^3} {\left(\frac{1}{2}\right)^{8-3}} = \frac{8 \times 7 \times 6}{1 \times 2 \times 3} \times {\left(\frac{1}{2}\right)^8}$$

= $\frac{56}{256} \approx 0.219 (3 \text{ sf})$ (A1) 1

(c)
$$p(5 \text{ heads}) = p(3 \text{ heads}) (by symmetry)$$
 (M1)
 $p(3 \text{ or } 4 \text{ or } 5 \text{ heads}) = p(4) + 2p(3)$ (M1)
 $= \frac{70 + 2 \times 56}{256} = \frac{182}{256}$
 $\approx 0.711 (3 \text{ sf})$ (A1) 3

[6]