Oct 01 Paper 4

3

3 (a)



In the diagram, MN and PQ are parallel and MQ and NP meet at O.

(i) Show that triangles MNO and QPO are similar.

[2]

(ii) OM = 5 cm and ON = 4 cm. OP = (y + 1) cm and OQ = (2y - 2) cm.

Explain why 
$$\frac{2y-2}{5} = \frac{y+1}{4} .$$
 [1]

(iii) Solve the equation in part (a)(ii).

[3]

(iv) Find the length of NP.

[1]

Oct 02 Paper 4

8



Sarah investigates cylindrical plant pots.

The standard pot has base radius r cm and height h cm.

Pot A has radius 3r and height h. Pot B has radius r and height 3h. Pot C has radius 3r and height 3h.

(a) (i) Write down the volumes of pots A, B and C in terms of  $\pi$ , r and h.

[3]

(ii) Find in its lowest terms the ratio of the volumes of A:B:C.

[2]

(iii) Which one of the pots A, B or C is mathematically similar to the standard pot? Explain your answer.

[2]

- (iv) The surface area of the standard pot is  $S \text{ cm}^2$ . Write down in terms of S the surface area of the similar pot. [2]
- (b) Sarah buys a cylindrical plant pot with radius 15 cm and height 20 cm. She wants to paint its outside surface (base and curved surface area).
  - (i) Calculate the area she wants to paint.

[2]

(ii) Sarah buys a tin of paint which will cover 30 m<sup>2</sup>.

How many plant pots of this size could be painted on their outside surfaces completely using this tin of paint?

[4]