SEQUENCES AND SERIES - PRACTICE MARKING SCHEME

1. (a) $a=100 \quad d=25$
$T_{17}=100+(17-1) \times 25$
$=\$ 500$
(A1) (C2)
(b) $\quad S_{n}=\frac{n}{2}(a+l)$
$S_{17}=\frac{17}{2}(100+500)$
$=\$ 5100$
Note: Allow follow through from candidate's answer for T_{17}, which is l

OR
$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
$S_{17}=\frac{17}{2}\{2 \times 100+(17-1) \times 25\}$
$=\$ 5100$
(A1) (C2)
OR
Table
2. (a) For obtaining an equation in r^{2}, can be implied
$28=7 r^{2}$
$r=2$
(A1) (C3)
(b) For using their value of r in the GP sum formula For obtaining 114681 (accept fewer s.f. up to 115000)
(M1)
(M1) (A1) (C3)
3. (a) Choice $\mathrm{A}=100 \times 12=\$ 1200$

Choice $B=1100\left(1+\frac{12}{1200}\right)^{12}=\$ 1239.51$
(M1) (A1)
Choice $\mathrm{C}=75+80+\ldots$

$$
\begin{equation*}
=\frac{12}{2}\{2 \times 75+11 \times 5\}=\$ 1230 \tag{M1}
\end{equation*}
$$

Choice D $=80+80 \times 1.05+80 \times 1.05^{2}+\ldots$

$$
\begin{equation*}
=\frac{80\left(1.05^{12}-1\right)}{(1.05-1)}=\$ 1273.37 \tag{M1}
\end{equation*}
$$

Note: Award method marks if candidate works out each amount. But the answer has to be accurate to receive the mark of (A1).
(b) Option D because the total allowance is the highest
(c) $1200\left(1+\frac{r}{100}\right)^{2}=1452$
$\left(1+\frac{r}{100}\right)^{2}=\frac{1452}{1200}=1.21$
$\left(1+\frac{r}{100}\right)=\sqrt{1.21}=1.1$
$\frac{r}{100}=0.1$
$r=10 \%$
(C1) (R1) 2
(A1)
(A1) 4
[14]
4. (a) $100+15 \times 10$
$=250$
OR
250 (using table function of the GDC)
(b) $\quad 100(1.08)^{10}$
(M1)
$=215.89$
(A1)
OR
215.89 (using table function of the GDC)
(G2) (C2)
(c) $100+15 x=100(1.08)^{x}$

After 16 years
Note: Candidate can use trial and error so not necessary to see the first line to award (A2).

OR

16 years (using table function of the GDC).
(M1)
(A1)
(G2) (C2)
(G2) (C2)
5. (a) $u_{1}+3 d=12$
$u_{1}+9 d=42$
Note: Award (A1) for left hand side correct, (A1) for right hand side correct.
(b) $\begin{aligned} & 6 d=30 \\ & d=5 \\ & u_{1}=-3\end{aligned}$
(A1)
(A1)
(M1)(A1) (C4)
Note: Follow through (ft) from candidate's equations.
6. (a) $u_{l}=-16, u_{l}+10 d=39$

$$
\begin{equation*}
-16+10 d=39 \tag{M1}
\end{equation*}
$$

Note: Award (M1) for correct formula, (A1) for correct numbers.

$$
\begin{align*}
10 d & =39+16=55 \tag{A1}\\
d & =5.5 \tag{A1}
\end{align*}
$$

(b) $u_{1} r^{2}=12$

$$
\begin{equation*}
u_{1} r^{4}=\frac{16}{3} \tag{M1}
\end{equation*}
$$

Note: Award (M1) for correct formula, (A1) for correct numbers.

$$
\begin{align*}
& r^{2}=\frac{\left(\frac{16}{3}\right)}{12}=\frac{16}{36}=\frac{4}{9} \tag{M1}\\
& r=\frac{2}{3} \tag{A1}
\end{align*}
$$

7. $4^{\text {th }}$ term $=a+3 d$
$8^{\text {th }}$ term $=a+7 d$
$20^{\text {th }}$ term $=a+19 d$
Note: Award (M1) for each correct answer up to a maximum of [2 marks].

$$
\begin{align*}
& a+7 d=2(a+3 d) \\
& a+19 d=4000 \tag{M1}
\end{align*}
$$

Note: Award (M1) for any one correct equation.
$d=200$
(A1)
8. (a)
(i) $\quad a=\$ 250$
$d=\$ 200$
$T_{10}=250+9 \times 200$
$=2050$
Note: Award the marks for the values of ' a ' and ' d ' if they are correctly substituted into the formula without being explicitly stated.
(ii) $a=\$ 10$
$r=2$
(A1)
$T_{0}=10 \times 2^{9}$
$=5120$
(A1) 6
Note: Award the marks for the values of ' a ' and ' r ' if they are correctly substituted into the formula without being explicitly stated.
(b) $S_{10}=\frac{10}{2}(250+2050)$
$=11500$
OR
$S_{10}=\frac{10}{2}\{2 \times 250+(10-1) \times 200\}$
$=11500$
(A1) 2
(c) Option One: $\$ 10000$

Option Two: $\$ 11500$
Option Three: $S_{10}=\frac{10\left(2^{10}-1\right)}{2-1}$

$$
\begin{equation*}
=10230 \tag{M1}
\end{equation*}
$$

Therefore, Option Two would be best.
(R1) 4
[12]
9. (a) (i) 2 minutes +6 seconds +6 seconds $=2$ minutes 12 seconds (M1)(A1)
(ii) $2(1.05)^{2}=2.205$
(M1)(AG) 3
(b) $2+2 \times 1.05+2 \times 1.05^{2}+\ldots+2 \times 1.05^{9}$
$=\frac{2\left(1.05^{10}-1\right)}{(1.05-1)}=25.2$ minutes (or 25 minutes 12 seconds) $\quad(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1) \quad 3$
10. (a) The sixth number is 22
(b) $u_{200}=2+199 \times 4$
(M1)(A1)(A1)
$=798$
(A1) (C4)
Note: Award (A1) for $a=2$ stated or used, (A1) for $d=4$ stated or used.
(c) $S_{90}=\frac{90}{2}(2 \times 2+89 \times 4)$ or $\frac{90}{2}(2+358)$
(M1)(A1)
$=16200$
(A1) (C3)
11. (a) $u_{n}=2(0.9)^{7}=0.957 \mathrm{~m}$
(M1)(A1) 2
Note: Award (M1) for substitution into formula, list or suitable diagram.
(b) $\quad S_{n}=\frac{2\left(1-(0.9)^{5}\right)}{1-(0.9)}=8.19 \mathrm{~m}$
(M1)(M1)(A1)

Note: Award (M1) for substitution into formula, list or suitable diagram.
Total distance travelled $=2 \times 8.19=16.4 \mathrm{~m}$.
(A1) 4
[6]
12. (a) $u_{1}=59 \quad u_{2}=55$
$(\mathrm{A} 1)(\mathrm{A} 1) \quad 2$
(b) $63-4 n=-13 \quad-4 n=-76 \quad n=19$
(M1)(A1) or (G2) 2
(c) $63-4 k+63-4(k+1)=34$

$$
-8 k=-88 \quad k=11 \quad(\mathrm{M} 1)(\mathrm{M} 1)(\mathrm{A} 1)
$$

Note: A ward (M1) for the terms 15 and 19.
13. (a) $4 n-3$
(b) 397
(c) $\quad S_{100}=\frac{100}{2}[(2 \times 1)+(99 \times 4)]$ or $50(1+397)$

$$
\begin{equation*}
=19900 \tag{M1}
\end{equation*}
$$

14. (a) Let the population at the end of 1999 be x.

$$
\begin{align*}
& \frac{44100}{x}=\frac{x}{40000} \\
& x=42000 \tag{A1}
\end{align*}
$$

(b) $r=\frac{44100}{42000}$

$$
\begin{equation*}
r=1.05 \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
u_{n}=u_{1} r^{n-1} \tag{M1}
\end{equation*}
$$

$$
44100=u_{1}(1.05)^{6}
$$

$$
\begin{equation*}
u_{1}=32908 \text { (or } 32900 \text { to } 3 \text { s.f.) } \tag{A1}
\end{equation*}
$$

15. (a) $u_{6}=u_{1}+5 \mathrm{~d}=24$
$u_{1}+5 \times 8=24$
$u_{1}=24-40$
$=-16$
(A1) (C3)
(b) $\quad S_{n}=\frac{n}{2}(2 \times-16+(n-1) 8)$
(M1)(A1)
$600=\frac{n}{2}(-32+8 n-8)$
$1200=-40 n+8 n^{2}$
$150=-5 n+n^{2}$
$(n-15)(n+10)=0$
$n=15$ or
(A1) (C5)
Note: Not all the steps of working out need to be shown.
16. (a) $r=\frac{2500}{2000}$
$=1.25$
(A1) (C2)
(b) $\quad \mathrm{S}_{6}=\frac{2000\left(1.25^{6}-1\right)}{1.25-1}$

Note: Award (M1) for any appropriate method
$=22517.57813$.
$=22518$ (to the nearest dollar)

