1)

10 (a) (i)	$\frac{8 \times(8+1)}{2}=36$ $1+2+3+\ldots .+8=36$	E1	
(ii)	80200	B1	
(b) (i)	$2(1+2+3+\ldots . .+n)=$ $2 \times \frac{n(n+1)}{2}=n(n+1)$	E1	both steps must be shown
(ii)	40200	B1ft	ft their (a)(ii) - their $\mathbf{(b) (i i)}$ or their $(\mathbf{b})($ (ii) $-200 \mathrm{ft}$ Not for zero or negative answer
(iii)	40000	B1	e.g. $2 n^{2}+n$ (c) (i)
$\frac{2 n(2 n+1)}{2}$ oe final answer	B2	M1 for their $(\mathbf{c})(\mathbf{i})-n(n+1)$ or $n(n+1)-n$ or $n / 2(2+2(n-1))$	
(ii)	n^{2} cao	[9]	

2)

\begin{tabular}{|c|c|c|c|}
\hline (a) \& 15, 21, 28, 36 \& B2 \& B1 for 3 correct \\
\hline (b) (i) \& $10+15=25,15+21=36$ etc \& B1 \& Any two complete and correct statements \\
\hline (ii) \& Square \& B1 \& \\
\hline (c) (i) \& 2 \& B1 \& \\
\hline (ii) \& $$
\frac{4 \times 5}{2}=10 \quad \text { o.e. }
$$ \& E1 \& \\
\hline (iii) \& 16290 c.a.o. \& B1 \& \\
\hline (d) (i) \& $$
\begin{array}{ll}
\hline \frac{(n+1)(n+2)}{2} \text { or } \frac{n^{2}+3 n+2}{2} \text { seen } \\
\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2} \text { or } \frac{n^{2}+n}{2}+\frac{n^{2}+3 n+2}{2} \\
\frac{(n+1)}{2}(n+n+2) & \frac{2 n^{2}+4 n+2}{2} \\
\frac{(n+1)(2 n+2)}{2} & n^{2}+2 n+1 \\
\frac{2(n+1)(n+1)}{2}=(n+1)^{2} & (n+1)^{2} \\
\hline
\end{array}
$$ \& M1
M1

E1 \& | Denominator could be their k May be implied by next line |
| :--- |
| This line must be seen and at least one more step, without any error, to gain the E mark |
| Dependent on M1M1. Fully established no errors | \\

\hline (ii) \& 1711 and 1770 final answers c.a.o. \& B2 \& SC1 for 59 or 58 or 1711 or 1770 seen \\
\hline
\end{tabular}

3)

(a)	Reasonable diagram, 25, 13, 62	4	B1 B1 B1 B1	diagram may be freehand
(b)	$64,19,146$	3	B1 B1 B1	
(c)	n^{2} oe			
	$2 n+3$ oe	2	B1	
(d)(i)	2	1		
(ii)	20202 ft	1 ft	ft $10101 \times$ their k	

4)

(a)	Dots all correctly placed in Diagram 4	1	
(b)	Column 4 16, 25, 16, 41 Column 5 25, 41, 20, 61 Column $n: n^{2}, \quad 4 n, \quad n^{2}+(n+1)^{2}$ oe	7	B2 or B1 for three correct B2 or B1 for three correct B1 B1 B1 oe likely to be $(n-1)^{2}+n^{2}+4 n$ or $2 n^{2}+2 n+1$ After any correct answer for column n, apply isw
(c)(i)	79601 cao	1	
(ii)	800 ft	1 ft	ft their $4 n$ linear expression only
(d)	12 cao	1	

5)

(a) $\left.\left\lvert\, \begin{array}{llllll}(A & 1) & 8 & 27 & 64 & 125 \\ (B & 4\end{array}\right.\right) 8$
$\left(\begin{array}{lllll}C & 4\end{array}\right) 9 \quad 16 \quad 25 \quad 36$
(b) 512

169
(c) 25

99
(d) $\begin{array}{ll}145 & n^{3}+4 n \text { oe } \\ 16 & (n+1)^{2}-4 n\end{array}$
$16(n+1)^{2}-4 n$ oe but isw

2	B1 for 3 correct
1	
2	B1 for 3 correct
1	
1	
1	
1	
1,1	Likely oe is $(n-1)^{2}$

6)

(a)

33, 41
$16 \pi, 25 \pi$
$20 \pi, 30 \pi$
(b) (i) $8 n+1$ oe final answer
(ii) 137 www2
(c) (i) $n^{2} \pi$ oe final answer
(ii) $9 n^{2} \pi$ oe final answer
(d) $\quad n(n+1) \pi$ oe final answer

B1 each
e.g. $9+8(n-1)$, condone $n=8 n+1$

SC1 for $8 n+k$
M1 for their $(b)(i)=1097$

Allow (3n) ${ }^{2} \pi$
SC1 for a quadratic expression e.g. $n(n+1), n^{2}+5, n^{2}+n \pi$

Sequences 1 Answers

7) (a) (i) 20
(ii) $n-4$ oe $n+4$ oe $n+6$ oe
(iii) $(n-4)(n+4)-(n-6)(n+6)$
$n^{2}-4 n+4 n-16-\left(n^{2}-6 n+6 n\right.$ -36) or better

20
(b) (i) 24
(ii) $(n-5)(n+5)-(n-7)(n+7)$ isw
or $n^{2}-25-\left(n^{2}-49\right)$ isw or $n^{2}-25-n^{2}+49$ isw
(c) $(11 \times 23)-(9 \times 25)$

253-225
[=28]
(d) $4 t \mathrm{oe}$
(e) $c=28$ and $d=30$

52

Accept unsimplified

2
M1

E1

1
2

E1

1

1
1

B1 for two correct
ft from their algebraic expressions can be implied by $n^{2}-4 n+4 n-16-\left(n^{2}-6 n+6 n-\right.$ 36) or $n^{2}-16-\left(n^{2}-36\right)$

Must have a line of algebra

With no errors or omission of brackets

M1 for $n-5, n+5, n-7, n+7$ seen

Allow algebraic solution from
$(n-6)(n+6)-(n-8)(n+8)$

Accept unsimplified
e.g. $n^{2}-(t-1)^{2}-\left[n^{2}-(t+1)^{2}\right]$

