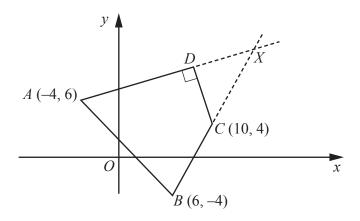
Remainder and Factor Theorem, Matrices and Co-ordinate Geometry Sept 2015

1) It is given that
$$\mathbf{A} = \begin{pmatrix} 4 & -2 \\ 8 & -3 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 0 & 4 \\ 5 & -1 & 4 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix}$.

(ii) Calculate
$$\mathbf{A}^{-1}\mathbf{B}$$
. [4]

2) Solutions to this question by accurate drawing will not be accepted.


The points A(-3,2) and B(1,4) are vertices of an isosceles triangle ABC, where angle $B=90^{\circ}$.

(ii) Find the equation of the line
$$BC$$
. [3]

- The function $f(x) = ax^3 + 4x^2 + bx 2$, where a and b are constants, is such that 2x 1 is a factor. Given that the remainder when f(x) is divided by x 2 is twice the remainder when f(x) is divided by x + 1, find the value of a and of b. [6]
- The expression $2x^3 + ax^2 + bx + 21$ has a factor x + 3 and leaves a remainder of 65 when divided by x 2.

(i) Find the value of
$$a$$
 and of b . [5]

- (ii) Hence find the value of the remainder when the expression is divided by 2x + 1. [2]
- 5) Solutions to this question by accurate drawing will not be accepted.

The diagram shows a quadrilateral *ABCD*, with vertices A(-4, 6), B(6, -4), C(10, 4) and D. The angle $ADC = 90^{\circ}$. The lines BC and AD are extended to intersect at the point X.

- (i) Given that C is the midpoint of BX, find the coordinates of D.
- (ii) Hence calculate the area of the quadrilateral *ABCD*. [2]

[7]