quadratics ans

0 min
0 marks

1. (a) $y=2 x$
(A1)
(b) $y=2 x+8$ (follow through from part (a))
(c) $2 x+8=0$ (or other method) (A1)
$(-4,0)$ (follow through from part (b))
2. (a) $\mathrm{A} ; \quad y=0,3 x=24 \Rightarrow x=8$ $\mathrm{A}(8,0)$

$$
\mathrm{B} ; \quad x=0,4 y=24 \Rightarrow y=6
$$

$$
\begin{equation*}
\mathrm{B}(0,6) \tag{A1}
\end{equation*}
$$

(b) $\mathrm{M} ; x_{m}=\frac{8+0}{2}=4, y_{m}=\frac{0+6}{2}=3$
$\mathrm{M}(4,3)$
(c) $\quad L_{2}$: gradient $=\frac{3--2}{4-0}=\frac{5}{4}$ $y=\frac{5}{4} x-2$ (or equivalent)
(d) (i) $\mathrm{M}(4,3), \mathrm{C}(0,-2)$

$$
\begin{align*}
\mathrm{MC} & =\sqrt{(4-0)^{2}+(3-(-2))^{2}} \tag{M1}\\
& =\sqrt{41} \\
& =6.40 \tag{A1}
\end{align*}
$$

(ii) $\mathrm{A}(8,0), \mathrm{C}(0,-2)$

$$
\begin{align*}
\mathrm{AC} & =\sqrt{8^{2}+(-2)^{2}} \tag{M1}\\
& =\sqrt{68} \\
& =8.25
\end{align*}
$$

(A1) 4
(e) (i)

$\cos \mathrm{M}=\frac{5^{2}+(\sqrt{41})^{2}-(\sqrt{68})^{2}}{2 \times 5 \sqrt{41}}$
$=\frac{25+41-68}{10 \sqrt{41}}$
$\hat{C M A}=91.8^{\circ}$ (3 s.f. $)$
(ii) Area of $\triangle \mathrm{CMA}=\frac{1}{2} \sqrt{41} \times 5 \sin 91.8^{\circ}$
$=15.99991171 \ldots$
$=16.0$ (3 s.f.)
(A1) 5
3. (a)

For six single lines going to correct y (y-value can be repeated)
Correct diagram (y-values not repeated)
(b) $\quad x \in\{-2,-1,0,1,2,3\}$
(A2) (C2)
Note: Award (A1) if one value omitted.
(c) $y \in\{-3,-5,3,13\}$
(A2) (C2)
4. (a) Put $x=0$ to find $y=-2$

Coordinates are $(0,-2)$
Note: Award (M1)(A0) for -2 if working is shown. If not, award (MO)(A0).
(b) Factorise fully, $\mathrm{y}=(x-2)(x+1)$.
(A1)(A1)
$y=0$ when $x=-1,2$.
(A1)(A1)
Coordinates are $\mathrm{A}(-1,0), \mathrm{B}(2,0)$.
(A1)(A1) (C6)
Note: Award (C2) for each correct x value if no method shown and full coordinates not given. If the quadratic formula is used correctly award $(M 1)(A 1)(A 1)(A 1)(A 1)(A 1)$. If the formula is incorrect award only the last (A1)(A1) as ft.
5. (a) $(x+2)(x-4)$
(b) (i) $(-2,0)$
(ii) $(1,-9)$
6. (a)

(A3) (C3)
Notes: Award (Al) for point (0,5) indicated. Award (A2) for correct shape.
(b) $(1.5,0.5)$
(A1)(A1) (C2)
(c) $x=1.5$
(A1) (C1)
7. (a) $x^{2}-5 x+6=0$
$(x-2)(x-3)=0$
$x=2$
$x=3$
(A1)
(b) $(2,0)$ $(3,0)$

Notes: Follow through from part (a). Both must be correct and written as coordinates for (Al)
8. (a) $(x-2)(x-4)$
(A1)(A1) (C2)
(b) $x=2, x=4$
(A1)(ft)(A1)(ft) (C2)
(c) $\quad x=0.807, x=6.19$

Note: Award maximum of $(A 0)(A 1)$ if coordinate pairs given.

OR

(M1) for an attempt to solve $x^{2}-7 x+5=0$ via formula with correct values substituted.
$x=\frac{7 \pm \sqrt{29}}{2}$
9. (a) $\frac{0+6}{2}=3 \quad h=3$
(M1)(A1) (C2)

Note: Award (M1) for any correct method.
(b) $y=a x(x-6)$
$8=3 a(-3)$
(A1)(ft)
$a=-\frac{8}{9}$
(A1)(ft)
$y=-\frac{8}{9} x(x-6)$
(A1)(ft)
Notes: Award (A1) for correct substitution of $b=6$ into equation.
Award (A1)(ft) for substitution of their point V into the equation.

OR

$y=a(x-3)^{2}+8$
Note: Award (A1)(ft) for correct substitution of their h into the equation.
$0=a(6-3)^{2}+8 \mathbf{O R} 0=a(0-3)^{2}+8$
Note: Award (A1) for correct substitution of an x-intercept.
$a=-\frac{8}{9}$
$y=-\frac{8}{9}(x-3)^{2}+8$
(A1)(ft) (C4)
10. (a) $x=0, x=4$
(A1)(A1) (C2)
Notes: Accept 0 and 4
(b) $x=2$
(A1)(A1) (C2)
Note: Award (A1) for $x=$ constant, (A1) for 2.
(c) $x=-2$

Note: Accept-2
(d) $y \geq-4 \quad(f(x) \geq-4)$
(A1) (C1)
Notes: Accept alternative notations.
Award (AO) for use of strict inequality.
11. (a) $q=4$
(A1) (C1)
(b) $\quad 2.5=\frac{r}{4}$
$r=10$
(M1)
(c) $\quad-8.5$
(A1)(ft) (C1)
(d) $-8.5 \leq y \leq 104$
(A1)(ft)(A1)(ft) (C2)
Notes: Award (A1)(ft) for their answer to part (c) with correct inequality signs, (A1)(ft) for 104. Follow through from their values of q and r. Accept 104 ± 2 if read from graph.
12. (a)

Note: Award (A1) for a correctly labelled graph, (A1) for correct scales, (A1) for line $f(x)=6-x$ drawn correctly, (A1) for line $f(x)=x-6$ drawn correctly, (A1) for $g(x)=\frac{1}{2} x$ drawn correctly.
(b) (i) Points named on the graph (A and B can be inversed)
(ii) $\mathrm{A}(4,2), \mathrm{B}(12,6)$
(c) \quad Midpoint $=\left(\frac{12+4}{2}, \frac{6+2}{2}\right)$
$=(8,4)$
(A1)
(A1)(A1) 3
(A1) 2

Note: Allow (A2) for reading from the graph but both coordinates must be correct.
(d) \quad Gradient $=\frac{4-0}{8-6}=2$

$$
\begin{align*}
& y=m x+c \tag{A1}\\
& 0=2 \times 6+c \tag{M1}\\
& c=-12 \tag{A1}
\end{align*}
$$

Equation is $y=2 x-12$ (or correct alternatives).
Ft from candidate's previous work.
(A1) 4
13. (a) $220=2(W+x)$

Therefore $W=\frac{220-2 x}{2}$ or $110-x$
(b) \quad Area $=x(110-x)($ allow follow through from part (a))
(c) Area $=70(110-70)=2800 \mathrm{~m}^{2}$ (allow follow through from part $\left.(b)\right)$
(A1)
14. (a) $x(x-k)$
(b) $\quad x=0$ or $x=k$
(A1) (C1)
Note: Both correct answers only
(c) $k=3$
(A1) (C1)
(d) Vertex at $x=\frac{-(-3)}{2(1)}$
(M1)

Note: (M1) for correct substitution in formula

$$
\begin{align*}
& x=1.5 \tag{A1}\\
& y=-2.25
\end{align*}
$$

(A1)(ft)
OR
$f^{\prime}(x)=2 x-3$
Note: (M1) for correct differentiation
$x=1.5$
$y=-2.25$
(A1)(ft)
OR

for finding the midpoint of their 0 and 3	$(\mathrm{M} 1)$
$x=1.5$	(A1)(ft)
$y=-2.25$	(A1)(ft)

Note: If final answer is given as $(1.5,-2.25)$ award a maximum of (M1)(A1)(AO)
15. (a)

x	0	10	20	30	40	50	60	70	80	90
P	$\mathbf{- 3 0}$	15	$\mathbf{5 0}$	75	90	$\mathbf{9 5}$	$\mathbf{9 0}$	75	50	$\mathbf{1 5}$

Note: Award $1 / 2-$-mark for each correct bold entry, and round down.
If a candidate obtains (AO) here but has clearly shown the method of substituting in the values of x into the formula award (M1)
(b)

(A2)(A2)(A1)
Note: For graph, follow through from candidate's table
Notes: Award (A2) for axes, (A2) for plotting points and (A1)
for a smooth curve.
Axes: Award $1 / 2$-mark for each of the following and then round down:
horizontal axis labelled with " x " or "Numbers of glasses..."
vertical axis labelled with "P" of "Profit"
horizontal scale \rightarrow consistent and presents values
$0 \rightarrow 90$
vertical scale as for horizontal but represents their range of values for P.
Points: Award (A2) for 0 or 1 error
Award (A1) for 2 or 3 errors
Award (AO) otherwise
(c) (i) maximum profit $=95$ swiss francs
(A1)
(A1)
(iv) 30 swiss francs

Note: Award no marks for -30 swiss francs
Note: Follow through from candidate's graph
(d) Fiona's share $=\frac{3}{6}$

Profit from 40 glasses $=90$ swiss francs
Fiona's profit $=\frac{1}{2} \times 90$

$$
\begin{equation*}
=45 \tag{A1}
\end{equation*}
$$

