IB Questionbank Mathematical Studies 3rd edition

Quadratics

112 min
110 marks

1. The following diagram shows a straight line l.

(a) Find the equation of the line l.
(b) The line n is parallel to l and passes through the point $(0,8)$. Write down the equation of the line n.
(c) The line n crosses the horizontal axis at the point P . Find the coordinates of P .
2. The line L_{1} shown on the set of axes below has equation $3 x+4 y=24 . L_{1}$ cuts the x-axis at A and cuts the y-axis at B .

Diagram not drawn to scale

(a) Write down the coordinates of A and B.
M is the midpoint of the line segment $[A B]$.
(b) Write down the coordinates of M.

The line L_{2} passes through the point M and the point $\mathrm{C}(0,-2)$.
(c) Write down the equation of L_{2}.
(d) Find the length of
(i) MC ;
(ii) AC.
(e) The length of AM is 5. Find
(i) the size of angle CMA;
(ii) the area of the triangle with vertices C, M and A .
3. (a) Represent the function $y=2 x^{2}-5$, where $x \in\{-2,-1,0,1,2,3\}$ by a mapping diagram.

(b) List the elements of the domain of this function.
(c) List the elements of the range of this function.
4. The graph of the function $y=x^{2}-x-2$ is drawn below.

(a) Write down the coordinates of the point C .
(b) Calculate the coordinates of the points A and B.
5. The diagram shows the graph of $y=x^{2}-2 x-8$. The graph crosses the x-axis at the point A , and has a vertex at B.

(a) Factorize $x^{2}-2 x-8$.
(b) Write down the coordinates of each of these points
(i) A ;
(ii) B .
(Total 4 marks)
6. (a) Sketch the graph of the function $y=2 x^{2}-6 x+5$.
(b) Write down the coordinates of the local maximum or minimum of the function.
(c) Find the equation of the axis of symmetry of the function.
(Total 6 marks)
7. (a) Solve the equation $x^{2}-5 x+6=0$.
(b) Find the coordinates of the points where the graph of $y=x^{2}-5 \mathrm{x}+6$ intersects the x-axis.
8. Let $f(x)=x^{2}-6 x+8$.
(a) Factorise $x^{2}-6 x+8$.
(b) Hence, or otherwise, solve the equation $x^{2}-6 x+8=0$.

Let $g(x)=x+3$.
(c) Write down the solutions to the equation $f(x)=g(x)$.
9. A quadratic curve with equation $y=a x(x-b)$ is shown in the following diagram.

The x-intercepts are at $(0,0)$ and $(6,0)$, and the vertex V is at $(h, 8)$.
(a) Find the value of h.
(b) Find the equation of the curve.
10. The following is the graph of the quadratic function $y=f(x)$.

(a) Write down the solutions to the equation $f(x)=0$.
(b) Write down the equation of the axis of symmetry of the graph of $f(x)$.
(c) The equation $f(x)=12$ has two solutions. One of these solutions is $x=6$. Use the symmetry of the graph to find the other solution.
(d) The minimum value for y is -4 . Write down the range of $f(x)$.
11. The graph of $y=2 x^{2}-r x+q$ is shown for $-5 \leq x \leq 7$.

The graph cuts the y-axis at $(0,4)$.
(a) Write down the value of q.

The axis of symmetry is $x=2.5$.
(b) Find the value of r.
(c) Write down the minimum value of y.
(d) Write down the range of y.
12. Two functions are defined as follows
$f(x)=\left\{\begin{array}{l}6-x \text { for } 0 \leq x<6 \\ x-6 \text { for } x \geq 6\end{array}\right.$
$g(x)=\frac{1}{2} x$
(a) Draw the graphs of the functions f and g in the interval $0 \leq x \leq 14,0 \leq y \leq 8$ using a scale of 1 cm to represent 1 unit on both axes.
(b) (i) Mark the intersection points A and B of $f(x)$ and $g(x)$ on the graph.
(ii) Write down the coordinates of A and B.
(c) Calculate the midpoint M of the line AB .
(d) Find the equation of the straight line which joins the points M and N .
13. The perimeter of this rectangular field is 220 m . One side is $x \mathrm{~m}$ as shown.

$x \mathrm{~m}$
m.

(a) Express the width (W) in terms of x.
(b) Write an expression, in terms of x only, for the area of the field.
(c) If the length (x) is 70 m , find the area.
(Total 4 marks)
14. (a) Factorise the expression $x^{2}-k x$.
(b) Hence solve the equation $x^{2}-k x=0$.

The diagram below shows the graph of the function $f(x)=x^{2}-k x$ for a particular value of k.

(c) Write down the value of k for this function.
(d) Find the minimum value of the function $y=f(x)$.
15. The profit (P) in Swiss Francs made by three students selling homemade lemonade is modelled by the function

$$
P=-\frac{1}{20} x^{2}+5 x-30
$$

where x is the number of glasses of lemonade sold.
(a) Copy and complete the table below

x	0	10	20	30	40	50	60	70	80	90
P		15			90			75	50	

(3)
(b) On graph paper draw axes for x and P, placing x on the horizontal axis and P on the vertical axis. Use suitable scales. Draw the graph of P against x by plotting the points. Label your graph.
(c) Use your graph to find
(i) the maximum possible profit;
(ii) the number of glasses that need to be sold to make the maximum profit;
(iii) the number of glasses that need to be sold to make a profit of 80 Swiss Francs;
(iv) the amount of money initially invested by the three students.
(d) The three students Baljeet, Jane and Fiona share the profits in the ratio of 1:2:3 respectively. If they sold 40 glasses of lemonade, calculate Fiona's share of the profits.

