Quadratic Expressions and Equations

1)	1	(i)	a = -12, b = -4	B1, B1 [2]	B1 for each
		(ii)	-4	√B1 [1]	Follow through on their y value

0606/11/O/N/10

2)			
	5	Eliminate y $x^2 + (8 - m)x + 9 = 0$	M1 A1
		Use $b^2 * 4ac$ Reach $(8-m) * \pm 6$ or solves $m^2 - 16m + 28 * 0$ (* is either > or =)	DM1 DDM1
		m = 2 and 14 $m < 2$, $m > 14$	A1 A1 [6]

0606/22/O/N/10

3)	3 $4(2k+1)^2 = 4(k+2)$ $4k^2 + 3k - 1 = 0$ leading to $k = \frac{1}{4}, -1$	M1 A1 M1 A1 [4]	M1 for use of ' $b^2 - 4ac$ ' Correct quadratic equation M1 for correct attempt at solution A1 for both 1 values	
	_	2 2 4		i i

0606/01/O/N/09

4)	7 (i) $y = 4x^2 - 12x + 3$ $y = (2x - 3)^2 - 6$	B1 B1 B1	[3]	B1 for 2 (part of linear factor) B1 for -3 (part of linear factor) B1 for -6
	(ii) $\left(\frac{3}{2},-6\right)$	√B1, √B1	[2]	Follow through on their a , b and c Allow calculus method.
	(iii) f≥-6	√B1	[1]	Follow through on their c

0606/01/O/N/08

5)	1	$x^{2} + (2k+10)x + (k^{2}+5) = 0$	M1		M1 for equating to zero and use of
		`			$b^2 = 4ac$
		$(2k+10)^2 = 4(k^2+5)$	M1		M1 for solution
		k = -2	A1		
		dv		[3]	
		(or $\frac{dy}{dx} = 2x + (2k+10), x = -(k+5)$	M1		M1 for differentiation and attempt to equate to zero.
		$0 = (k+5)^{2} - (2k+10)(k+5) + k^{2} + 5$	M1		$\hat{M1}$ for attempt to substitute in for x in
		leading to $k = -2$)	A1		terms of k , for $y = 0$ and for attempt at solution.
		$(\text{or } (x+A)^2 = x^2 + (2k+10)x + k^2 + 5$	M1		M1 for approach
		$A = (k+5), A^2 = k^2 + 5$	M1		M1 for equating and attempt at solution
		$(k+5)^2 = k^2 + 5$, leading to $k = -2$)	A 1		
		(or by completing the square			
		$y = (x+(k+5))^2 - (k+5)^2 + (k^2+5)$	M1		M1 for approach
		$\left(k+5\right)^2 = k^2 + 5$	M1		M1 for equating last 2 terms to zero and
		leading to $k = -2$)	A 1		attempt to solve
	I		l		I I

0606/12/M/J/11

•		10	411	[~]	
6)	4	Eliminates y	M1		
		$x^2 + kx - 2x + 16 (= 0)$	A1		
		Uses $b^2 - 4ac$	M1		
		$k^2 - 4k - 60*0$ or $(k-2)*\pm 8$	A1		
		k = -6 or 10	A1		
		k < -6 or k > 10	A1	[6]	
	- (*)	61) 1 · 0 · 05 / 16)	D.1	\neg	

0606/21/M/J/11

7)				
7)	1	$24x^2 - 6x = 0$	M1	M1 for attempt to get an equation in one variable.
		$(or y^2 + 3y + 2 = 0)$	M1	M1 for attempt to get 2 or 3 term quadratic = 0
		leading to (0, 1) and $\left(\frac{1}{4}, -2\right)$	DM1 A1,A1	DM1 for attempt to solve A1 for each pair of values
			[5]	

0606/12/M/J/10

Quadratic Expressions and Equations

8)				1
-,	4 (i)	$5x - 3 = kx^2 - 3x + 5$	M1	M1 for equating line and curve equations
		$kx^2 - 8x + 8 = 0$	DM1, A1	DM1 for use of $b^2 - 4ac$ on resulting
		using $b^2 - 4ac = 0$, $k = 2$	[3]	quadratic
		(Alt scheme: $5 = 2kx - 3$, $x = \frac{4}{k}$ $\frac{20}{k} - 3 = \frac{16}{k} - \frac{12}{k} + 5$		(Alt scheme: M1 for attempt to differentiate quadratic and equate to 5 DM1 for simplification and solution using
		k k k leading to $k = 2$)		resulting quadratic
	(ii)	leading to $x = 2$, $y = 7$	M1, A1 [2]	M1 for obtaining x and y coords

0606/01/M/J/09

9)
3 Eliminates
$$x$$
 or y

$$7x^2 - 14x - 21 = 0 \text{ or } 7y^2 + 14y - 105 = 0 \text{ oe}$$
Solve 3 term quadratic
$$(x+1)(x-3)$$

$$(3,3) \text{ and } (-1,-5)$$
A1

[or $x = \frac{2 \pm \sqrt{16}}{2}$

$$-1 \text{ and } 3$$

$$(3,3) \text{ and } (-1,-5)$$
M1

A1

A1

A1

[5]

0606/02/M/J/08