## Quadratic Expressions and Equations

- The equation of a curve is given by  $y = 2x^2 + ax + 14$ , where a is a constant. Given that this equation can also be written as  $y = 2(x - 3)^2 + b$ , where b is a constant, find
  - (i) the value of a and of b, [2]
  - (ii) the minimum value of y. [1]
- Find the set of values of m for which the line y = mx 2 cuts the curve  $y = x^2 + 8x + 7$  in two distinct points.
- Find the values of k for which the equation  $x^2 2(2k+1)x + (k+2) = 0$  has two equal roots. [4]
- 4) (i) Express  $4x^2 12x + 3$  in the form  $(ax + b)^2 + c$ , where a, b and c are constants and a > 0. [3]
  - (ii) Hence, or otherwise, find the coordinates of the stationary point of the curve  $y = 4x^2 12x + 3$ . [2]
  - (iii) Given that  $f(x) = 4x^2 12x + 3$ , write down the range of f. [1]
- 5) Find the value of k for which the x-axis is a tangent to the curve

$$y = x^2 + (2k+10)x + k^2 + 5.$$
 [3]

- Find the set of values of k for which the line y = 2x 5 cuts the curve  $y = x^2 + kx + 11$  in two distinct points.
- 7) Find the coordinates of the points of intersection of the curve  $y^2 + y = 10x 8x^2$  and the straight line y + 4x + 1 = 0. [5]
- 8) The line y = 5x 3 is a tangent to the curve  $y = kx^2 3x + 5$  at the point A. Find

(i) the value of 
$$k$$
, [3]

(ii) the coordinates of A. [2]

9) Find the coordinates of the points where the straight line y = 2x - 3 intersects the curve  $x^2 + y^2 + xy + x = 30$ .

[5]