1)

(a) $\quad \mathrm{P}=\frac{22}{23}(=0.957$ (3 s.f. $\left.)\right)$
(A2)
(C2)
(b)

(M1)
OR
$\mathrm{P}=\mathrm{P}(\mathrm{RRG})+\mathrm{P}(\mathrm{RGR})+\mathrm{P}(\mathrm{GRR})$
(M1)

$$
\begin{gathered}
\frac{22}{25} \times \frac{21}{24} \times \frac{3}{23}+\frac{22}{25} \times \frac{3}{24} \times \frac{21}{23}+\frac{3}{25} \times \frac{22}{24} \times \frac{21}{23} \\
=\frac{693}{2300}(=0.301(3 \text { s.f. }))
\end{gathered}
$$

2)

(a) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \Rightarrow \mathrm{P}(A \cap B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cup B)($ M1)

$$
\begin{aligned}
& =\frac{3}{11}+\frac{4}{11}-\frac{6}{11} \\
& =\frac{1}{11}(0.0909)
\end{aligned}
$$

(b) For independent events, $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$

$$
\begin{aligned}
& =\frac{3}{11} \times \frac{4}{11} \\
& =\frac{12}{121}(0.0992)
\end{aligned}
$$

3)

(a) Independent (I)
(b) Mutually exclusive (M)
(c) \quad Neither (N)

Note:	Award part marks if the candidate shows understanding of I and/or M	
	e.g. I $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$	(M1)
	$\mathrm{M} \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$	(M1)

4)

$$
\begin{array}{lr}
\mathrm{P}(\mathrm{RR})=\frac{7}{12} \times \frac{6}{11}\left(=\frac{7}{22}\right) & \text { M1 A1 } \\
\mathrm{P}(\mathrm{YY})=\frac{5}{12} \times \frac{4}{11}\left(=\frac{5}{33}\right) & \text { M1 A1 } \\
\mathrm{P}(\text { same colour })=\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{YY}) & \text { (M1) } \\
\quad=\frac{31}{66}(=0.4703 \text { s.f. }) & \text { A1 }
\end{array}
$$

Note: \quad Award $\boldsymbol{C} 2$ for $\left(\frac{7}{12}\right)^{2}+\left(\frac{5}{12}\right)^{2}=\frac{74}{144}$.
5)
(a) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
(M1)

$$
\begin{align*}
\mathrm{P}(A \cap B) & =\frac{1}{2}+\frac{3}{4}-\frac{7}{8} \\
& =\frac{3}{8} \tag{C2}
\end{align*}
$$

$$
(A 1)
$$

(b) $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\left(=\frac{\frac{3}{8}}{\frac{3}{4}}\right)$

$$
\begin{equation*}
=\frac{1}{2} \tag{C2}
\end{equation*}
$$

$$
(A 1)
$$

(c) Yes, the events are independent
(A1) (C1)

EITHER

$$
\begin{equation*}
\mathrm{P}(A \mid B)=\mathrm{P}(A) \tag{C1}
\end{equation*}
$$

$$
(R 1)
$$

OR

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)
$$

$$
(R 1)
$$

6) (i) (a) AA AB AC BA BB BC CA CB CC
(A1)
(b) \quad (i) $\frac{3}{9}$
(A1)
(ii) $\frac{5}{9}$
(A1)
(iii) $\frac{1}{9}$
(A1)
(iv) $\frac{7}{9}$
[1 mark]
(A1)
[4 marks]
(ii) (a)

(b) $\mathrm{P}($ green from box N$)$

$$
\begin{aligned}
& =\frac{5}{8} \times \frac{6}{11}+\frac{3}{8} \times \frac{7}{11} \\
& =\frac{51}{88}(0.580)
\end{aligned}
$$

(c) $\mathrm{P}($ red from $\mathrm{M} \mid$ green from box N$)=\frac{\mathrm{P}(G \cap R)}{\mathrm{P}(G)}$

$$
\begin{align*}
& \mathrm{P}(G \cap R)=\frac{30}{88} \tag{A1}\\
& \mathrm{P}(G)=\frac{51}{88} \tag{A1}
\end{align*}
$$

$P($ red from $M \mid$ green from box $N)=\frac{\frac{30}{88}}{\frac{51}{88}}$
$=\frac{30}{51}\left(=\frac{10}{17}, 0.588\right)$

