Note:	Award part marks if the candidate shows understanding of I and/or M		
	e.g. I $P(A \cap B) = P(A) P(B)$	(M1)	
	$M P(A \cup B) = P(A) + P(B)$	(M1)	

$$P(RR) = \frac{7}{12} \times \frac{6}{11} \left(= \frac{7}{22} \right)$$

5 4 (5)

$$P(YY) = \frac{5}{12} \times \frac{4}{11} \left(= \frac{5}{33} \right)$$

$$P(\text{same colour}) = P(RR) + P(YY)$$
(M1)

P(same colour) = P(RR) + P(YY)

$$=\frac{31}{66}(=0.470\,3\,\mathrm{s.f.})$$
 A1 C6

(C2)

Note: Awar	d C2 for $\left(\frac{7}{12}\right)^2$	$+\left(\frac{5}{12}\right)^2 = \frac{74}{144}.$
------------	---	--

(a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (M1)
 $P(A \cap B) = \frac{1}{2} + \frac{3}{4} - \frac{7}{8}$
 $= \frac{3}{8}$ (A1)

(b)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \begin{pmatrix} = \frac{3}{8} \\ = \frac{3}{4} \end{pmatrix}$$
 (M1)
 $= \frac{1}{2}$ (A1) (C2)

$$P(A \mid B) = P(A) \tag{R1}$$

OR

=

$$P(A \cap B) = P(A)P(B) \tag{C1}$$

5)

4)

(ii) (a)

continued...

(b) P(green from box N)

$$= \frac{5}{8} \times \frac{6}{11} + \frac{3}{8} \times \frac{7}{11}$$
(A1)(A1)

$$= \frac{51}{88} (0.580)$$
(A1) (N2)

[3 marks]

(c)
$$P(\text{red from } M | \text{green from box } N) = \frac{P(G \cap R)}{P(G)}$$

 $P(G \cap R) = \frac{30}{88}$ (A1)
 $P(G) = \frac{51}{88}$ (A1)
 $P(\text{red from } M | \text{green from box } N) = \frac{\frac{30}{88}}{\frac{51}{88}}$ (M1)
 $= \frac{30}{51} \left(= \frac{10}{17}, 0.588 \right)$ (A1) (N3)
[4 marks]

Total [16 marks]