1) [Maximum mark: 10]

A packet of seeds contains 40 % red seeds and 60 % yellow seeds. The probability that a red seed grows is 0.9, and that a yellow seed grows is 0.8. A seed is chosen at random from the packet.

(a) On your **answer sheet**, copy and complete the probability tree diagram below.

[3 marks]

- (b) (i) Calculate the probability that the chosen seed is red and grows.
 - (ii) Calculate the probability that the chosen seed grows.
 - (iii) Given that the seed grows, calculate the probability that it is red. [7 marks]
- 2) Two unbiased 6-sided dice are rolled, a red one and a black one. Let *E* and *F* be the events

E : the same number appears on both dice;

F: the sum of the numbers is 10.

Find

- (a) P(E);
- (b) P(F);
- (c) $P(E \cup F)$.

Probability 2

- 3) A class contains 13 girls and 11 boys. The teacher randomly selects four students. Determine the probability that all four students selected are girls.
- 4) Let A and B be independent events such that P(A) = 0.3 and P(B) = 0.8.
 - (a) Find $P(A \cap B)$.
 - (b) Find $P(A \cup B)$.
 - (c) Are A and B mutually exclusive? Justify your answer.
- In a class, 40 students take chemistry only, 30 take physics only, 20 take both chemistry and physics, and 60 take neither.
 - (a) Find the probability that a student takes physics given that the student takes chemistry.
 - (b) Find the probability that a student takes physics given that the student does **not** take chemistry.
 - (c) State whether the events "taking chemistry" and "taking physics" are mutually exclusive, independent, or neither. Justify your answer.
- Events E and F are independent, with $P(E) = \frac{2}{3}$ and $P(E \cap F) = \frac{1}{3}$. Calculate
 - (a) P(F);
 - (b) $P(E \cup F)$.
- 7) Consider the events A and B, where $P(A) = \frac{2}{5}$, $P(B') = \frac{1}{4}$ and $P(A \cup B) = \frac{7}{8}$.
 - (a) Write down P(B).
 - (b) Find $P(A \cap B)$.
 - (c) Find P(A|B).

8) The eye colour of 97 students is recorded in the chart below.

	Brown	Blue	Green
Male	21	16	9
Female	19	19	13

One student is selected at random.

- (a) Write down the probability that the student is a male.
- (b) Write down the probability that the student has green eyes, given that the student is a female.
- (c) Find the probability that the student has green eyes or is male.
- The Venn diagram below shows information about 120 students in a school. Of these, 40 study Chinese (C), 35 study Japanese (J), and 30 study Spanish (S).

A student is chosen at random from the group. Find the probability that the student

(a) studies exactly two of these languages;

[1 mark]

(b) studies only Japanese;

[2 marks]

(c) does not study any of these languages.

[3 marks]

Probability 2

- A bag contains four apples (A) and six bananas (B). A fruit is taken from the bag and eaten. Then a second fruit is taken and eaten.
 - (a) Complete the tree diagram below by writing probabilities in the spaces provided.

[3 marks]

(b) Find the probability that one of each type of fruit was eaten.

[3 marks]