PROB NON CALC ANS SL

0 min 0 marks

1. (a)
$$P(X=2) = \frac{4}{14} \left(=\frac{2}{7}\right)$$
 A1 N1 1

(b)
$$P(X=1) = \frac{1}{14}$$
 (A1)

$$\mathbf{P}(X=k) = \frac{k^2}{14} \tag{A1}$$

setting the sum of probabilities = 1

e.g.
$$\frac{1}{14} + \frac{4}{14} + \frac{k^2}{14} = 1, 5 + k^2 = 14$$

 $k^2 = 9\left(\operatorname{accept} \frac{k^2}{14} = \frac{9}{14}\right)$ A1

$$k = 3$$
 AG N0 4

M1

[7]

(c) correct substitution into
$$E(X) = \sum x P(X = x)$$
 A1

$$e.g. \ 1\left(\frac{1}{14}\right) + 2\left(\frac{4}{14}\right) + 3\left(\frac{9}{14}\right)$$
$$E(X) = \frac{36}{14}\left(=\frac{18}{7}\right)$$
A1 N1 2

2. (a) (i)
$$s = 1$$
 A1 N1

(ii) evidence of appropriate approach (M1) e.g. 21-16, 12+8-q=15q=5 A1 N2

(iii)
$$p = 7, r = 3$$
 A1A1 N2 5

(b) (i)
$$P(art|music) = \frac{5}{8}$$
 A2 N2

(ii) METHOD 1

$$P(\operatorname{art}) = \frac{12}{16} \left(= \frac{3}{4} \right)$$
 A1

evidence of correct reasoning R1

$$e.g. \ \frac{3}{4} \neq \frac{5}{8}$$

the events are not independent AG N0

METHOD 2

$$P(art) \times P(music) = \frac{96}{256} \left(= \frac{3}{8} \right)$$
A1

evidence of correct reasoning

e.g.
$$\frac{12}{16} \times \frac{8}{16} \neq \frac{5}{16}$$

the events are not independent

AG N0 4

R1

A1

(M1)

(c) P(first takes only music) =
$$\frac{3}{16}$$
 = (seen anywhere) A1

P(second takes only art)= $\frac{7}{15}$ (seen anywhere)

evidence of valid approach

e.g.
$$\frac{3}{16} \times \frac{7}{15}$$

P(music and art)= $\frac{21}{240} \left(=\frac{7}{80}\right)$ A1 N2 4

[13]

3.	(a)	(i) <i>n</i> 0.1 A1 N1			
		(ii) <i>m</i> 0.2, <i>p</i> 0.3, <i>q</i> 0.4 A1A1A1	N3	4	
	(b)	appropriate approach <i>e.g.</i> $P(B') = 1 - P(B), m + q, 1 - (n + p)$ (M1) P(B') = 0.6 A1	N2	2	[6]
4.	(a)	(i) $p = 0.2$	A1	N1	
		(ii) $q = 0.4$	A1	N1	
		(iii) $r = 0.1$	A1	N1	
	(b)	$P(A \mid B') = \frac{2}{3}$	A2	N2	
		<i>Note:</i> Award A1 for an unfinished answer such as $\frac{0.2}{0.3}$.			
	(c)	valid reason e.g. $\frac{2}{2} \neq 0.5, 0.35 \neq 0.3$	R1		
		⁻ 3 thus, <i>A</i> and <i>B</i> are not independent	AG	N0	[6]

5. (a) (i)
$$\frac{7}{24}$$
 A1 N1

(ii) evidence of **multiplying** along the branches (M1)

$$e.g. \ \frac{2}{3} \times \frac{5}{8}, \frac{1}{3} \times \frac{7}{8}$$

adding probabilities of two mutually exclusive paths (M1) *e.g.* $(\frac{1}{2} \times \frac{7}{2}) + (\frac{2}{2} \times \frac{3}{2}) \cdot (\frac{1}{2} \times \frac{1}{2}) + (\frac{2}{2} \times \frac{5}{2})$

$$P(F) = \frac{13}{24}$$

$$A1 N2$$

(b) (i)
$$\frac{1}{3} \times \frac{1}{8}$$
 (A1)
 $\frac{1}{24}$ A1

(ii) recognizing this is
$$P(E \mid F)$$
 (M1)
 $e.g. \quad \frac{7}{24} \div \frac{13}{24}$
 $\frac{168}{312} \left(=\frac{7}{13}\right)$ A2 N3

(c)

X (cost in euros)	0	3	6
P (X)	$\frac{1}{9}$	$\frac{4}{9}$	$\frac{4}{9}$

A2A1 N3

(d) correct substitution into E(X) formula (M1)

e.g.
$$0 \times \frac{1}{9} + 3 \times \frac{4}{9} + 6 \times \frac{4}{9}, \frac{12}{9} + \frac{24}{9}$$

E(X) = 4 (euros) A1 N2 [14]

6. (a)
$$p = \frac{4}{5}$$
 A1 N1

(b) multiplying along the branches e.g. $\frac{1}{5} \times \frac{1}{4}, \frac{12}{40}$ (M1)

adding products of probabilities of two mutually exclusive paths (M1)

$$e.g. \frac{1}{5} \times \frac{1}{4} + \frac{4}{5} \times \frac{3}{8}, \frac{1}{20} + \frac{12}{40}$$

 $P(B) = \frac{14}{40} \left(= \frac{7}{20} \right)$ A1 N2

(c) appropriate approach which must include A' (may be seen on diagram) (M1)

$$P(A' \cap B)$$
 $P(A \cap B)$

$$e.g. \frac{P(A' \cap B)}{P(B)} \left(\text{do not accept} \frac{P(A \cap B)}{P(B)} \right)$$

$$P(A' \mid B) = \frac{\frac{4}{5} \times \frac{3}{8}}{\frac{7}{20}}$$
(A1)

$$P(A' \mid B) = \frac{12}{14} \left(= \frac{6}{7} \right)$$
 A1 N2

[7]

7. (a)
$$P(A) = \frac{1}{11}$$
 A1 N1

(b)
$$P(B|A) = \frac{2}{10}$$
 A2 N2

(c) recognising that
$$P(A \cap B) = P(A) \times P(B \mid A)$$
 (M1)
correct values (A1)
 $e.g. P(A \cap B) = \frac{1}{11} \times \frac{2}{10}$
 $P(A \cap B) = \frac{2}{110}$ A1 N3

[6]

8. (a)

3, 9	4, 9	5, 9
3, 10	4, 10	5, 10
3, 10	4, 10	5, 10

A2 N2

(b) 12, 13, 14, 15 (accept 12, 13, 13, 13, 14, 14, 14, 15, 15) A2 N2

(c)
$$P(12) = \frac{1}{9}, P(13) = \frac{3}{9}, P(14) = \frac{3}{9}, P(15) = \frac{2}{9}$$
 A2 N2

(d) correct substitution into formula for E(X) A1 e.g. E(S) = $12 \times \frac{1}{9} + 13 \times \frac{3}{9} + 14 \times \frac{3}{9} + 15 \times \frac{2}{9}$ E(S) = $\frac{123}{9}$ A2 N2

(e) METHOD 1

correct expression for expected gain E(A) for 1 game (A1) $e.g. \frac{4}{9} \times 50 - \frac{5}{9} \times 30$ $E(A) = \frac{50}{9}$ amount at end = expected gain for 1 game × 36 (M1) = 200 (dollars) A1 N2

METHOD 2

attempt to find expected number of wins and losses (N		
<i>e.g.</i> $\frac{4}{5} \times 36, \frac{5}{9} \times 36$		
attempt to find expected gain $E(G)$	(M1)	
<i>e.g.</i> $16 \times 50 - 30 \times 20$		
E(G) = 200 (dollars)	A1	N2

[12]

9.	(a)	appropriate approach <i>e.g.</i> tree diagram or a table	(M1)	
		$P(win) = P(H \cap W) + P(A \cap W))$	(M1)	
		= (0.65)(0.83) + (0.35)(0.26)	A1	
		= 0.6305 (or 0.631)	A1	N2

- (b) evidence of using complement (M1) *e.g.* 1 - p, 0.3695 choosing a formula for conditional probability (M1) *e.g.* $P(H \mid W') = \frac{P(W' \cap H)}{P(W')}$ correct substitution (0.65)(0.17) (-0.1105)
 - *e.g.* $\frac{(0.65)(0.17)}{0.3695} \left(= \frac{0.1105}{0.3695} \right)$ A1 P(home) = 0.299 A1 N3
 - [8]

[6]

A1A1

N2

10. (a)

Note: Award A1 for vertical line to right of mean, A1 for shading to right of **their** vertical line.

(b)	evidence of recognizing symmetry e.g. 105 is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part, 105 - 100 = 100 - d	(M1)	
	<i>d</i> = 95	A1	N2
(c)	evidence of using complement <i>e.g.</i> $1 - 0.32$, $1 - p$	(M1)	
	P(d < X < 105) = 0.68	A1	N2

11.	(a)	(i)	evidence of substituting into $n(A \cup B) = n(A) + n(B) - n(A \cap B)$	(M1)	
			<i>e.g.</i> 75 + 55 – 100, Venn diagram		
			30	A1	N2

(ii) 45 A1 N1

(b) (i) **METHOD 1**

evidence of using complement, Venn diagram(M1)e.g. 1 - p, 100 - 30 $\frac{70}{100} \left(=\frac{7}{10}\right)$ A1N2

METHOD 2

attempt to find P(only one sport), Venn diagram (M1) e.g. $\frac{25}{100} + \frac{45}{100}$ $\frac{70}{100} \left(= \frac{7}{10} \right)$ A1 N2

(ii)
$$\frac{45}{70} \left(=\frac{9}{14}\right)$$
 A2 N2

(c)	valid reason in words or symbols	(R1)	
	<i>e. g.</i> $P(A \cap B) = 0$ if mutually exclusive, $P(A \cap B)$ if not mutually exclusive		
	correct statement in words or symbols <i>e.g.</i> $P(A \cap B) = 0.3$, $P(A \cup B) \neq P(A) + P(B)$, $P(A) + P(B) > 1$, some students play both sports, sets intersect	A1	N2

(d)	valid reason for independence <i>e.g.</i> $P(A \cap B) = P(A) \times P(B)$, $P(B \mid A) = P(B)$	(R1)	
	correct substitution	A1A1	N3
	<i>e.g.</i> $\frac{30}{100} \neq \frac{75}{100} \times \frac{55}{100}, \frac{30}{55} \neq \frac{75}{100}$		

[12]

12. (a) (i)
$$P(B) = \frac{3}{4}$$
 A1 N1

(ii)
$$P(R) = \frac{1}{4}$$
 A1 N1

(b)
$$p = \frac{3}{4}$$
 A1 N1

$$s = \frac{1}{4}, t = \frac{3}{4}$$
 A1 N1

(c) (i)
$$P(X = 3)$$

= P (getting 1 and 2) = $\frac{1}{4} \times \frac{3}{4}$ A1

$$=\frac{3}{16}$$
 AG NO

(ii)
$$P(X=2) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \left(\text{or} 1 - \frac{3}{16} \right)$$
 (A1)

$$=\frac{13}{16}$$
A1 N2

(d) (i)

X	2	3
$\mathbf{P}(X=x)$	$\frac{13}{16}$	$\frac{3}{16}$

A2 N2

(ii) evidence of using $E(X) = \sum x P(X = x)$ (M1)

$$E(X) = 2\left(\frac{13}{16}\right) + 3\left(\frac{3}{16}\right)$$
(A1)

$$=\frac{35}{16}\left(=2\frac{3}{16}\right)$$
A1 N2

(e) win $10 \Rightarrow$ scores 3 one time, 2 other time (M1)

$$P(3) \times P(2) = \frac{13}{16} \times \frac{3}{16}$$
 (seen anywhere) A1

evidence of recognizing there are different ways of winning \$10 (M1)

$$e.g. P(3) \times P(2) + P(2) \times P(3), 2\left(\frac{13}{16} \times \frac{3}{16}\right),$$

$$\frac{36}{256} + \frac{3}{256} + \frac{36}{256} + \frac{3}{256}$$

$$P(\text{win }\$10) = \frac{78}{256} \left(=\frac{39}{128}\right)$$

A1 N3
[16]

13. (a) (i) correct calculation (A1)

$$e.g. \frac{9}{20} + \frac{5}{20} - \frac{2}{20}, \frac{4+2+3+3}{20}$$

P(male or tennis) = $\frac{12}{20} \left(=\frac{3}{5}\right)$ A1 N2
(ii) correct calculation (A1)
 $e.g. \frac{6}{20} \div \frac{11}{20}, \frac{3+3}{11}$
P(not football | female) = $\frac{6}{11}$ A1 N2
(b) P(first not football) = $\frac{11}{20}$, P(second not football) = $\frac{10}{20}$ A1

P(first not football) =
$$\frac{1}{20}$$
, P(second not football) = $\frac{1}{19}$ A1
P(neither football) = $\frac{11}{20} \times \frac{10}{19}$ A1

$$P(\text{neither football}) = \frac{110}{20} \left(-\frac{11}{20}\right)$$

P(neither football) =
$$\frac{110}{380} \left(=\frac{11}{38}\right)$$
 A1 N1

[7]

14. (a) evidence of using $\sum p_i = 1$ (M1) correct substitution A1 e.g. $10k^2 + 3k + 0.6 = 1$, $10k^2 + 3k - 0.4 = 0$ k = 0.1 A2 N2

(b)	evidence of using $E(X) = \sum p_i x_i$	(M1)
	correct substitution	(A1)

$$e.g. - 1 \times 0.2 + 2 \times 0.4 + 3 \times 0.3$$

E(X) = 1.5 A1 N2

[7]

(a) evidence of binomial distribution (seen anywhere) (M1)

$$e.g. X \sim B\left(3, \frac{1}{4}\right)$$

mean = $\frac{3}{4}$ (= 0.75) A1 N2

15.

(b)
$$P(X=2) = {3 \choose 2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)$$
 (A1)

$$P(X=2) = 0.141 \quad \left(=\frac{9}{64}\right)$$
 A1 N2

(c) evidence of appropriate approach M1*e.g.* complement, 1 - P(X = 0), adding probabilities

$$P(X=0) = (0.75)^3 \quad \left(=0.422, \frac{27}{64}\right) \tag{A1}$$

$$P(X \ge 1) = 0.578 \quad \left(=\frac{37}{64}\right)$$
 A1 N2

16. (a)
$$P(A \cap B) = P(A) \times P(B) (= 0.6x)$$
 A1 N1

(b) (i) evidence of using $P(A \cup B) = P(A) + P(B) - P(A)P(B)$ (M1) correct substitution A1 e.g. 0.80 = 0.6 + x - 0.6x, 0.2 = 0.4xx = 0.5 A1 N2

(ii) $P(A \cap B) = 0.3$ A1 N1

[7]

- (c) valid reason, with reference to $P(A \cap B)$ *e.g.* $P(A \cap B) \neq 0$
- R1 N1

[6]

17. (a) (i) number of ways of getting X = 6 is 5 (A1) $P(X = 6) = \frac{5}{36}$ A1 N2

> (ii) number of ways of getting X > 6 is 21 (A1) $P(X > 6) = \frac{21}{36} \left(= \frac{7}{12} \right)$ A1 N2

(iii)
$$P(X=7|X>5) = \frac{6}{26} \left(=\frac{3}{13}\right)$$
 A2 N2

(b) evidence of substituting into E(X) formula (M1) finding P(X < 6) = $\frac{10}{36}$ (seen anywhere) (A2)

evidence of using
$$E(W) = 0$$
(M1)correct substitutionA2

e.g.
$$3\left(\frac{5}{36}\right) + 1\left(\frac{21}{36}\right) - k\left(\frac{10}{36}\right) = 0, 15 + 21 - 10k = 0$$

 $k = \frac{36}{10} (= 3.6)$ A1 N4

[13]

18. METHOD 1

(a) $\sigma = 10$ (A1) $1.12 \times 10 = 11.2$ A111.2 + 100(M1)x = 111.2A1N2

(b)	100 - 11.2	(M1)		
	= 88.8	A1	N2	
				LC.

[6]

METHOD 2

(a)	$\sigma = 10$	(A1)	
	Evidence of using standardisation formula	(M1)	
	$\frac{x-100}{10} = 1.12$	A1	
	<i>x</i> = 111.2	A1	N2

(b)
$$\frac{100-x}{10} = 1.12$$
 A1
 $x = 88.8$ A1 N2

[6]

19. (a) For summing to 1 (M1) 1 + 2 + 1 + 1

e.g.
$$\frac{-1}{5} + \frac{-1}{5} + \frac{-1}{10} + x = 1$$

 $x = \frac{3}{10}$ A1 N2

(b) For evidence of using $E(X) = \sum x f(x)$ (M1) Correct calculation A1 $e.g. \ \frac{1}{5} \times 1 + 2 \times \frac{2}{5} + 3 \times \frac{1}{10} + 4 \times \frac{3}{10}$

$$E(X) = \frac{25}{10} (= 2.5)$$
A1 N2

(c)
$$\frac{1}{10} \times \frac{1}{10}$$
 (M1)
 $\frac{1}{100}$ A1 N2

[7]

20.	(a)	Evidence of using the complement <i>e.g.</i> $1 - 0.06$ p = 0.94	(M1) A1	N2
	(b)	For evidence of using symmetry Distance from the mean is 7 a a diagram $D = mean - 7$	(M1) (A1)	
		D = 10	A1	N2

	- 00	AI	112	
	$E(\text{trees}) = 200 \times 0.44$	(M1)	N/2	
(c)	P(17 < H < 24) = 0.5 - 0.06 = 0.44	(M1) A1		

- **21.** (a) (i) Attempt to find P(3*H*) = $\left(\frac{1}{3}\right)^3$ (M1)
 - $=\frac{1}{27}$ A1 N2
 - (ii) Attempt to find P(2H, 1T) $= 3\left(\frac{1}{3}\right)^{2}\frac{2}{3}$ (M1) A1 $= \frac{2}{9}$ A1 N2
 - (b) (i) Evidence of using $np\left(\frac{1}{3} \times 12\right)$ (M1) expected number of heads = 4 A1 N2
 - (ii)
 4 heads, so 8 tails
 (A1)

 $E(winnings) = 4 \times 10 8 \times 6 (= 40 48)$ (M1)

 = -\$ 8 A1
 N1
 - [10]
- **22.** (a) $\frac{3}{4}$ A1 N1
 - (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (M1) $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ $= \frac{2}{5} + \frac{3}{4} - \frac{7}{8}$ A1
 - $=\frac{11}{40}$ (0.275) A1 N2

(c)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \begin{pmatrix} =\frac{11}{40} \\ =\frac{3}{4} \end{pmatrix}$$
 A1
= $\frac{11}{30}$ (0.367) A1 N1

[6]

[6]

23. (a) $\frac{46}{97}$ (=0.474) A1A1 N2

(b)
$$\frac{13}{51}$$
 (=0.255) A1A1 N2

(c)
$$\frac{59}{97}$$
 (=0.608) A2 N2

24. (a) $\frac{19}{120} (=0.158)$ A1 N1

(b)
$$35 - (8 + 5 + 7)(= 15)$$
 (M1)

Probability =
$$\frac{15}{120} \left(= \frac{3}{24} = \frac{1}{8} = 0.125 \right)$$
 (M1)
A1 N2

(c) Number studying = 76 (A1)
Number not studying = 120 - number studying = 44 (M1)
Probability =
$$\frac{44}{120} \left(= \frac{11}{30} = 0.367 \right)$$
 A1 N3

[6]

25. (a)

A1A1A1 N3

(b)
$$\left(\frac{4}{10} \times \frac{6}{9}\right) + \left(\frac{6}{10} \times \frac{4}{9}\right)$$
 M1M1
= $\frac{48}{90} \left(\frac{8}{15}, 0.533\right)$ A1 N1

[6]

[6]

 26. (a)
 For summing to 1
 (M1)

 $eg \ 0.1 + a + 0.3 + b = 1$ (M1)

 a + b = 0.6 A1
 N2

(b) evidence of correctly using
$$E(X) = \sum x f(x)$$
 (M1)
 $eg \ 0 \times 0.1 + 1 \times a + 2 \times 0.3 + 3 \times b, \ 0.1 + a + 0.6 + 3b = 1.5$
Correct equation $0 + a + 0.6 + 3b = 1.5$ ($a + 3b = 0.9$) (A1)
Solving simultaneously gives
 $a = 0.45$ $b = 0.15$ A1A1 N3

27. (a) Independent
$$\Rightarrow P(A \cap B) = P(A) \times P(B)$$
 (= 0.3 × 0.8) (M1)
= 0.24 A1 N2

(b)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (= 0.3 + 0.8 - 0.24) M1
= 0.86 A1 N1

(c) No, with valid reason A2 N2

 $eg P(A \cap B) \neq 0$ or $P(A \cup B) \neq P(A) + P(B)$ or correct numerical equivalent

28. (a) For using
$$\sum p = 1$$
 (0.4 + p + 0.2 + 0.07 + 0.02 = 1) (M1)

$$p = 0.31 A1 N2$$

(b) For using
$$E(X) = \sum x P(X = x)$$
 (M1)

$$E(X) = 1(0.4) + 2(0.31) + 3(0.2) + 4(0.07) + 5(0.02)$$
$$= 2$$

A1 A2

N2

[6]

29. (a)
$$P(P \mid C) = \frac{20}{20+40}$$
 A1

$$=\frac{1}{3}$$
 A1 N1

(b)
$$P(P \mid C') = \frac{30}{30+60}$$
 A1

$$=\frac{1}{3}$$
 A1 N1

(c) Investigating conditions, or some relevant calculations(M1)
$$P$$
 is independent of C , with valid reasonA1N2 eg $P(P \mid C) = P(P \mid C'), P(P \mid C) = P(P),$

$$\frac{20}{150} = \frac{50}{150} \times \frac{60}{150} \quad (ie \ \mathsf{P}(P \cap C) = \mathsf{P}(P) \times \mathsf{P}(C))$$

[6]

30.	(a)	Adding probabilities	(M1)
		Evidence of knowing that $sum = 1$ for probability distribution	R1
		eg Sum greater than 1, sum = 1.3 , sum does not equal 1	N2

(b) Equating sum to
$$1 (3k + 0.7 = 1)$$
 M1

$$k = 0.1$$
 A1 N1

(c) (i)
$$P(X=0) = \frac{0+1}{20}$$
 (M1)

$$=\frac{1}{20}$$
A1 N2

(ii) Evidence of using
$$P(X > 0) = 1 - P(X = 0)$$

 $\left(\text{or} \frac{4}{20} + \frac{5}{20} + \frac{10}{20} \right)$ (M1)

. .

$$=\frac{19}{20}$$
 A1 N2

31. (a)

A1A1A1 N3

[8]

(b) (i)
$$P(M \text{ and } G) = \frac{1}{3} \times \frac{2}{5} (= \frac{2}{15} = 0.133)$$
 A1 N1

(ii)
$$P(G) = \frac{1}{3} \times \frac{2}{5} + \frac{2}{3} \times \frac{8}{10}$$
 (A1)(A1)

$$= \frac{10}{15} \left(= \frac{2}{3} = 0.667 \right)$$
 A1 N3

(iii)
$$P(M \mid G) = \frac{P(M \cap G)}{P(G)} = \frac{\frac{2}{15}}{\frac{2}{3}}$$
 (A1)(A1)

$$=\frac{1}{5}$$
 or 0.2 A1 N3

M1

(c)
$$P(R) = 1 - \frac{2}{3} = \frac{1}{3}$$
 (A1)

Evidence of using a correct formula

$$E(win) = 2 \times \frac{1}{3} + 5 \times \frac{2}{3} \left(\text{or } 2 \times \frac{1}{3} \times \frac{3}{5} + 2 \times \frac{2}{3} \times \frac{2}{10} + 5 \times \frac{1}{3} \times \frac{2}{5} + 5 \times \frac{2}{3} \times \frac{8}{10} \right) \qquad \text{A1}$$

= \$4 \left(\alpha\cong \frac{12}{3}, \frac{60}{15} \right) \quad \text{A1} \quad \text{N2} \quad \text{[14]}

32. (a) For attempting to use the formula
$$(P(E \cap F) = P(E)P(F))$$
(M1)Correct substitution or rearranging the formulaA1

$$eg \ \frac{1}{3} = \frac{2}{3} \ P(F), P(F) = \frac{P(E \cap F)}{P(E)}, P(F) = \frac{\frac{1}{3}}{\frac{2}{3}}$$

 $P(F) = \frac{1}{2}$ A1 N2

(b)	For attempting to use the formula $(P(E \cup F) = P(E) + P(F))$	
	$-(\mathbf{P}(E \cap F))$	(M1)

$$P(E \cup F) = \frac{2}{3} + \frac{1}{2} - \frac{1}{3}$$
 A1

$$=\frac{5}{6}(=0.833)$$
 A1 N2

[6]

33.	(a)	(i)	Attem	npt to	set up	sampl	e space,	space, (M)
		eg 1,1 2,1 3,1 4,1	4,1	A.	2 N3				
				1,2	2,2	3,2	4,2		
				1,3	2,3	3,3	4,3		
				1,4	2,4	3,4	4,4		
			4 -	×	×	×	x		
			3 -	×	×	×	×		
			G ₂	x	x	x	x		
			1	×	×	×	×		
			0	ł	2	3	4		
		(ii)	Proba	bility	of two	o 4s is	$\frac{1}{16}$ (= 0.0625)	А	1 N1

(b)

x	0	1	2
$\mathbf{P}(X=x)$	$\frac{9}{16}$	$\frac{6}{16}$	$\frac{1}{16}$

A1A1A1 N3

(c) Evidence of selecting appropriate formula for E(X)

$$eg E(X) = \sum_{0}^{2} x P(X = x), E(X) = np$$

Correct substitution

$$eg \ \mathcal{E}(X) = 0 \times \frac{9}{16} + 1 \times \frac{6}{16} + 2 \times \frac{1}{16}, \ \mathcal{E}(X) = 2 \times \frac{1}{4}$$
$$\mathcal{E}(X) = \frac{8}{16} \left(= \frac{1}{2} \right)$$
A1 N2

34. (a) Using
$$E(X) = \sum_{0}^{2} x P(X = x)$$
 (M1)

Substituting correctly
$$E(X) = 0 \times \frac{3}{10} + 1 \times \frac{6}{10} + 2 \times \frac{1}{10}$$
 A1

$$=\frac{8}{10}$$
 (0.8) A1 3

(M1)

[10]

(b) (i)

Note: Award (A1) for each complementary pair of probabilities,

ie
$$\frac{4}{6}$$
 and $\frac{2}{6}$, $\frac{3}{5}$ and $\frac{2}{5}$, $\frac{4}{5}$ and $\frac{1}{5}$.

(ii)
$$P(Y=0) = \frac{2}{5} \times \frac{1}{5} = \frac{2}{30}$$
 A1

$$P(Y=1) = P(RG) + P(GR) \left(= \frac{4}{6} \times \frac{2}{5} + \frac{2}{6} \times \frac{4}{5} \right)$$
M1

$$=\frac{16}{30}$$
A1

$$P(Y=2) = \frac{4}{6} \times \frac{3}{5} = \frac{12}{30}$$
(A1)

For forming a distribution

M1 5

у	0	1	2		
$\mathbf{P}(Y=y)$	$\frac{2}{30}$	$\frac{16}{30}$	$\frac{12}{30}$		

(c)
$$P(Bag A) = \frac{2}{6} \left(=\frac{1}{3}\right)$$
 (A1)

$$P(\text{BagA B}) = \frac{4}{6} \left(=\frac{2}{3}\right) \tag{A1}$$

For summing
$$P(A \cap RR)$$
 and $P(B \cap RR)$ (M1)

Substituting correctly P(RR) =
$$\frac{1}{3} \times \frac{1}{10} + \frac{2}{3} \times \frac{12}{30}$$
 A1

$$= \frac{27}{90} \left(\frac{3}{10}, 0.3\right)$$
 A1 5

(d) For recognising that P(1 or
$$6|RR) = P(A|RR) = \frac{P(A \cap RR)}{P(RR)}$$
 (M1)

$$=\frac{1}{30} \div \frac{27}{90}$$
A1

$$=\frac{3}{27}$$
 $\left(\frac{1}{9}, 0.111\right)$ A1 3

[19]

35. Total number of possible outcomes = 36 (may be seen anywhere) (A1)

(a)
$$P(E) = P(1,1) + P(2,2) + P(3,3) + P(4,4) + P(5,5) + P(6,6)$$

$$=\frac{6}{36}$$
 (A1) (C2)

(b)
$$P(F) = P(6, 4) + P(5, 5) + P(4, 6)$$

= $\frac{3}{36}$ (A1) (C1)

(c)
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

 $P(E \cap F) = \frac{1}{36}$
(A1)
 $P(E \cup F) = \frac{6}{36} + \frac{3}{36} - \frac{1}{36} \left(= \frac{8}{36} = \frac{2}{9}, 0.222 \right)$
(M1)(A1) (C3)

36. (a) (i)
$$P(A) = \frac{80}{210} = \left(\frac{8}{21} = 0.381\right)$$
 (A1) (N1)

(ii)
$$P(\text{year } 2 \text{ art}) = \frac{35}{210} = \left(\frac{1}{6} = 0.167\right)$$
 (A1) (N1)

(iii) No (the events are not independent, or, they are dependent) (A1) (N1)
EITHER

$$P(A \cap B) = P(A) \times P(B)$$
 (to be independent) (M1)
 $P(B) = \frac{100}{476} (-\frac{10}{476})$ (A1)

$$P(B) = \frac{10}{210} \left(= \frac{10}{21} = 0.476 \right)$$
(A1)

$$\frac{1}{6} \neq \frac{8}{21} \times \frac{10}{21}$$
(A1)

OR

P(A)=P(A|B) (to be independent) (M1)

$$P(A|B) = \frac{35}{100}$$
(A1)

$$\frac{8}{21} \neq \frac{35}{100}$$
 (A1)

[6]

$$P(B)=P(B|A)$$
 (to be independent) (M1)

$$P(B) = \frac{100}{210} \left(= \frac{10}{21} = 0.476 \right), P(B|A) = \frac{35}{80}$$
(A1)

$$\frac{35}{80} \neq \frac{100}{210}$$
 (A1) 6

Note: Award the first (M1) only for a *mathematical* interpretation of independence.

(b)
$$n(\text{history}) = 85$$
 (A1)

P(year 1|history) =
$$\frac{50}{85} = \left(\frac{10}{17} = 0.588\right)$$
 (A1)(N2) 2

(c)
$$\left(\frac{110}{210} \times \frac{100}{209}\right) + \left(\frac{100}{210} \times \frac{110}{209}\right) \left(= 2 \times \frac{110}{210} \times \frac{100}{209}\right)$$
 (M1)(A1)(A1)
= $\frac{200}{399} (= 0.501)$ (A1)(N2)

[12]

4

37. Correct probabilities $(\frac{13}{24}), (\frac{12}{23}), (\frac{11}{22}), (\frac{10}{21})$ (A1)(A1)(A1)(A1)(A1)

$$\text{Multiplying}\left(\frac{13}{24} \times \frac{12}{23} \times \frac{11}{22} \times \frac{10}{21}\right) \tag{M1}$$

$$P(4 \text{ girls}) = \frac{17160}{255024} \left(= \frac{65}{966} = 0.0673 \right)$$
(A1) (C6)

[6]

OR

38.	For using $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	(M1)
	Let $P(A) = x$ then $P(B) = 3x$	
	$P(A \cap B) = P(A) \times 3P(A) \ (= 3x^2)$	(A1)
	$0.68 = x + 3x - 3x^2$	(A1)
	$3x^2 - 4x + 0.68 = 0$	
	x = 0.2 ($x = 1.133$, not possible)	(A2)
	P(B) = 3x = 0.6	(A1) (C6)

(A1)(A1)(A1)

(b) (i)
$$P(R \cap S) = \frac{1}{3} \times \frac{4}{5} \left(= \frac{4}{15} = 0.267 \right)$$
 (A1) (N1)

(ii)
$$P(S) = \frac{1}{3} \times \frac{4}{5} + \frac{2}{3} \times \frac{1}{4}$$
 (A1)(A1)

$$=\frac{13}{30} (= 0.433) \tag{A1}$$
 (N3)

(iii)
$$P(R \mid S) = \frac{\frac{4}{15}}{\frac{13}{30}}$$
 (A1)(A1)
= $\frac{8}{13}$ (= 0.615) (A1)

[10]

(N3)

[6]

40. (a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (M1)
 $P(A \cap B) = \frac{1}{2} + \frac{3}{4} - \frac{7}{8}$
 $= \frac{3}{8}$ (A1) (C2)

(b)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \left(= \frac{\frac{3}{8}}{\frac{3}{4}} \right)$$
 (M1)
$$= \frac{1}{2}$$
 (A1) (C2)

$$P(A \mid B) = P(A) \tag{R1}$$

EITHER

 $P(A \cap B) = P(A)P(B) \tag{R1}$

[6]

41. (a)

(b) Probability that Dumisani will be late is
$$\frac{7}{8} \times \frac{1}{4} + \frac{1}{8} \times \frac{3}{5}$$
 (A1)(A1)

$$=\frac{47}{160} (0.294) \tag{A1}(N2) \quad 3$$

(c)
$$P(W|L) = \frac{P(W \cap L)}{P(L)}$$

 $P(W \cap L) = \frac{7}{8} \times \frac{1}{4}$
(A1)

$$P(L) = \frac{47}{160}$$
(A1)

$$P(W|L) = \frac{\frac{1}{32}}{\frac{47}{160}}$$
(M1)

$$=\frac{35}{47}(=0.745)$$
 (A1) (N3) 4

[11]

42. (a)
$$\frac{120}{360} \left(= \frac{1}{3} = 0.333 \right)$$
 (A1)(A1) (C2)

(b)
$$\frac{90+120}{360} \left(= \frac{210}{360} = \frac{7}{12} = 0.583 \right)$$
 (A2) (C2)

(c)
$$\frac{90}{210} \left(= \frac{3}{7} = 0.429 \right) \left(\text{Accept} \frac{\frac{1}{4}}{\frac{7}{12}} \right)$$
 (A1)(A1) (C2)

[6]

43. (a)

44.	(a)	Independent (I)	(C2)
	(b)	Mutually exclusive (M)	(C2)
	(c)	Neither (N)	(C2)
		<i>Note:</i> Award part marks if the candidate shows understanding of I and/or M	
		$eg \ I \ P(A \cap B) = P(A)P(B) \tag{M1}$	
		$M P(A \cup B) = P(A) + P(B) $ (M1)	

[6]

45. (a)

(b) (i)
$$P(E \cap H) = \frac{11}{88} = \frac{1}{8}$$
 (A1)

(ii)
$$P(H'|E) = \frac{P(H'\cap E)}{P(E)} = \frac{\frac{21}{88}}{\frac{32}{88}}$$
 (M1)

$$=\frac{21}{32} (= 0.656) \tag{A1}$$

OR

Required probability = $\frac{21}{32}$ (A1)(A1) 3

(c) (i) P(none in economics) =
$$\frac{56 \times 55 \times 54}{88 \times 87 \times 86}$$
 (M1)(A1)
= 0.253 (A1)

Notes: Award (M0)(A0)(A1)(ft)
$$for\left(\frac{56}{88}\right)^3 = 0.258.$$

Award no marks for $\frac{56 \times 55 \times 54}{88 \times 88 \times 88}$.

(ii)
$$P(\text{at least one}) = 1 - 0.253$$
 (M1)
= 0.747 (A1)

OR

$$3\left(\frac{32}{88} \times \frac{56}{87} \times \frac{55}{86}\right) + 3\left(\frac{32}{88} \times \frac{31}{87} \times \frac{56}{86}\right) + \frac{32}{88} \times \frac{31}{87} \times \frac{30}{86}$$
(M1)
= 0.747 (A1) 5

[12]

46.
$$P(RR) = \frac{7}{12} \times \frac{6}{11} \left(= \frac{7}{22} \right)$$
 (M1)(A1)

$$P(YY) = \frac{5}{12} \times \frac{4}{11} \left(= \frac{5}{33} \right)$$
(M1)(A1)
P (same colour) = P(RR) + P(YY) (M1)

(same colour) = P(RR) + P(YY) (M1)
=
$$\frac{31}{66}$$
 (= 0.470, 3 sf) (A1) (C6)

Note: Award C2 for
$$\left(\frac{7}{12}\right)^2 + \left(\frac{5}{12}\right)^2 = \frac{74}{144}$$
.

Г	6	1
-	-	

47. (a)
$$P = \frac{22}{23} (= 0.957 (3 \text{ sf}))$$
 (A2) (C2)

[6]

48. Sample space ={(1, 1), (1, 2) ... (6, 5), (6, 6)} (This may be indicated in other ways, for example, a grid or a tree diagram, partly or fully completed)

(a)
$$P(S < 8) = \frac{6+5+4+3+2+1}{36}$$
 (M1)

$$=\frac{7}{12}$$
 (A1)

OR

$$P(S < 8) = \frac{7}{12}$$
(A2)

(b) P (at least one 3) =
$$\frac{1+1+6+1+1+1}{36}$$
 (M1)

$$=\frac{11}{36}$$
 (A1)

OR

P (at least one 3) =
$$\frac{11}{36}$$
 (A2)

(c) P (at least one 3 | S < 8) =
$$\frac{P(\text{at least one } 3 \cap S < 8)}{P(S < 8)}$$
 (M1)

$$=\frac{\frac{7}{36}}{\frac{7}{12}}$$
(A1)

$$=\frac{1}{3}$$
 (A1)

[7]

49. (a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

= $\frac{3}{11} + \frac{4}{11} - \frac{6}{11}$ (M1)

$$=\frac{1}{11} (0.0909) \tag{A1}$$

(b) For independent events,
$$P(A \cap B) = P(A) \times P(B)$$
 (M1)
= $\frac{3}{11} \times \frac{4}{11}$ (A1)

$$=\frac{12}{121} (0.0992) \tag{A1} (C3)$$

[6]

50. P(different colours) = 1 - [P(GG) + P(RR) + P(WW)] (M1) = 1 - $\left(\frac{10}{6} \times \frac{9}{25} + \frac{10}{26} \times \frac{9}{25} + \frac{6}{26} \times \frac{5}{25}\right)$ (A1)

$$=1-\left(\frac{210}{650}\right) \tag{A1}$$

$$= \frac{44}{65} (= 0.677, \text{ to } 3 \text{ sf})$$
(A1) (C4)

OR

P(different colours) = P(GR) + P(RG) + P(GW) + P(WG) + P(RW) + P(WR) (A1) = $4\left(\frac{10}{26} \times \frac{6}{25}\right) + 2\left(\frac{10}{26} \times \frac{10}{25}\right)$ (A1)(A1) = $\frac{44}{65}$ (= 0.677, to 3 sf) (A1) (C4)

[4]

51. (a) s = 7.41(3 sf) (G3) 3

(b)								
Weight (W)	$W \le 85$	$W \leq 90$	$W \leq 95$	$W \leq 100$	$W \le 105$	$W \le 110$	$W \le 115$	
Number of packets	5	15	30	56	69	76	80	
							(A1)	1

(c)	(i)	From the graph, the median is approximately 96.8.			
		Answer: 97 (nearest gram).	(A2)		
	(ii)	From the graph, the upper or third quartile is approximately 101	2		

- (ii) From the graph, the upper or third quartile is approximately 101.2. Answer: 101 (nearest gram). (A2) 4
- (d) Sum = 0, since the sum of the deviations from the mean is zero. (A2) OR $(\sum w)$

$$\sum (W_i - \overline{W}) = \sum W_i - \left(80 \frac{\sum W_i}{80}\right) = 0$$
(M1)(A1) 2

(e) Let *A* be the event: W > 100, and *B* the event: $85 < W \le 110$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

$$P(A \mid B) = \frac{\Gamma(A + iB)}{P(B)}$$
(M1)

$$P(A \cap B) = \frac{20}{80} \tag{A1}$$

$$\mathbf{P}(B) = \frac{71}{80} \tag{A1}$$

$$\mathbf{P}(A \mid B) = 0.282 \tag{A1}$$

OR

71 packets with weight $85 < W \le 110$.	(M1)		
Of these, 20 packets have weight $W > 100$.	(M1)		
Required probability = $\frac{20}{71}$	(A1)		
= 0.282	(A1)		
Notes: Award (A2) for a correct final answer with no			

Notes: Award (A2) for a correct final answer with no reasoning. Award up to (M2) for correct reasoning or method.

[14]

4

(b)
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$65 = 30 + 50 - n(A \cap B)$$

$$\Rightarrow n(A \cap B) = 15 \text{ (may be on the diagram)}$$

$$n(B \cap A') = 50 - 15 = 35$$
(M1)
(A1) (C2)

(c)
$$P(B \cap A') = \frac{n(B \cap A')}{n(U)} = \frac{35}{100} = 0.35$$
 (A1) (C1)

[4]

53. (a)

(A1) (C1)

(b)
$$P(B) = 0.4(0.6) + 0.6 (0.5) = 0.24 + 0.30$$
 (M1)
= 0.54 (A1) (C2)

(c)
$$P(C|B) = \frac{P(B \cap C)}{P(B)} = \frac{0.24}{0.54} = \frac{4}{9} (= 0.444, 3 \text{ sf})$$
 (A1) (C1)

[4]

54. (a)

	Males	Females	Totals
Unemployed	20	40	60
Employed	90	50	140
Totals	110	90	200

Note: Award (A1) if at least 4 entries are correct. Award (A2) if all 8 entries are correct.

(b) (i)
$$P(\text{unemployed female}) = \frac{40}{200} = \frac{1}{5}$$
 (A1)

(ii)
$$P(\text{male I employed person}) = \frac{90}{140} = \frac{9}{14}$$
 (A1)

55. (a)

	Boy	Girl	Total
TV	13	25	38
Sport	33	29	62
Total	46	54	100
$P(TV) = \frac{3}{10}$	8		

(b)
$$P(TV | Boy) = \frac{13}{46} (= 0.283 \text{ to } 3 \text{ sf})$$
 (A2) (C2)

Notes: Award (A1) for numerator and (A1) for denominator. Accept equivalent answers.

56. (a)

diagram.

Award (M1) for correctly listing the outcomes 6, 6; 6 not 6; not 6, or the corresponding probabilities.

[4]

[4]

(b) P(one or more sixes) =
$$\frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6}$$
 or $\left(1 - \frac{5}{6} \times \frac{5}{6}\right)$ (M1)
= $\frac{11}{36}$ (A1) (C2)

57.

(b) (i)
$$n(A \cap B) = 2$$
 (A1) (C1)

(ii)
$$P(A \cap B) = \frac{2}{36} \left(\text{or } \frac{1}{18} \right)$$
 (allow **ft** from (b)(i)) (A1) (C1)

(c)
$$n(A \cap B) \neq 0$$
 (or equivalent) (R1) (C1)

[4]

[4]

58.
$$p(\text{Red}) = \frac{35}{40} = \frac{7}{8}$$
 $p(\text{Black}) = \frac{5}{40} = \frac{1}{8}$
(a) (i) $p(\text{one black}) = {\binom{8}{1}} {\left(\frac{1}{8}\right)^1} {\left(\frac{7}{8}\right)^7}$ (M1)(A1)
 $= 0.393 \text{ to } 3 \text{ sf}$ (A1) 3

(ii)
$$p(\text{at least one black}) = 1 - p(\text{none})$$
 (M1)
$$= 1 - {\binom{8}{0}} \left(\frac{1}{8}\right)^0 \left(\frac{7}{8}\right)^8$$
 (A1)
$$= 1 - 0.344$$

$$= 0.656$$
 (A1) 3

(b)	400 draws: expected number of blacks = $\frac{400}{8}$	(M1)		
	= 50	(A1)	2	[8]

59. (a)
$$p(A \cap B) = 0.6 + 0.8 - 1$$
 (M1)
= 0.4 (A1) (C2)

(b) $p(CA \cup CB) = p(C(A \cap B)) = 1 - 0.4$ (M1) = 0.6 (A1) (C2)

[4]