IB Questionbank Maths SL

PROB NON CALC ANS SL

0 min
0 marks

1. (a) $\mathrm{P}(X=2)=\frac{4}{14}\left(=\frac{2}{7}\right)$

A1 N1 1
(b) $\quad \mathrm{P}(X=1)=\frac{1}{14}$

$$
\begin{equation*}
\mathrm{P}(X=k)=\frac{k^{2}}{14} \tag{A1}
\end{equation*}
$$

setting the sum of probabilities $=1$
e.g. $\frac{1}{14}+\frac{4}{14}+\frac{k^{2}}{14}=1,5+k^{2}=14$
$k^{2}=9\left(\operatorname{accept} \frac{k^{2}}{14}=\frac{9}{14}\right)$

$$
k=3
$$

(c) correct substitution into $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$

$$
\begin{aligned}
& \text { e.g. } 1\left(\frac{1}{14}\right)+2\left(\frac{4}{14}\right)+3\left(\frac{9}{14}\right) \\
& \mathrm{E}(X)=\frac{36}{14}\left(=\frac{18}{7}\right)
\end{aligned}
$$

A1 N1 2
2. (a) (i) $s=1$

A1 N1
e.g. 21-16, $12+8-q=15$ $q=5$

A1 N2
(iii) $p=7, r=3$
(b) (i) $\quad \mathrm{P}($ art \mid music $)=\frac{5}{8}$
(ii) METHOD 1
$P($ art $)=\frac{12}{16}\left(=\frac{3}{4}\right)$
evidence of correct reasoning
e.g. $\frac{3}{4} \neq \frac{5}{8}$
the events are not independent
AG N0

METHOD 2

$\mathrm{P}($ art $) \times \mathrm{P}($ music $)=\frac{96}{256}\left(=\frac{3}{8}\right)$
A1
evidence of correct reasoning
e.g. $\frac{12}{16} \times \frac{8}{16} \neq \frac{5}{16}$
the events are not independent
(c) $\quad \mathrm{P}$ (first takes only music) $=\frac{3}{16}=($ seen anywhere $)$
$\mathrm{P}($ second takes only art $)=\frac{7}{15}$ (seen anywhere)
evidence of valid approach
e.g. $\frac{3}{16} \times \frac{7}{15}$
$\mathrm{P}($ music and art $)=\frac{21}{240}\left(=\frac{7}{80}\right)$

A1

A1

A1 N2 4
3. (a) (i) $n \square \square 0.1$
(ii) $m \square \square 0.2, p \square \square 0.3, q \square \square 0.4$
(b) appropriate approach
e.g. $\mathrm{P}\left(B^{\prime}\right)=1-\mathrm{P}(B), m+q, 1-(n+p)$
$\mathrm{P}\left(B^{\prime}\right)=0.6$

A1 N2 2
4. (a) (i) $p=0.2$
(ii) $\quad q=0.4$
(iii) $r=0.1$
(b) $\mathrm{P}\left(A \mid B^{\prime}\right)=\frac{2}{3}$

Note: Award Al for an unfinished answer such as $\frac{0.2}{0.3}$.
(c) valid reason
e.g. $\frac{2}{3} \neq 0.5,0.35 \neq 0.3$
thus, A and B are not independent
AG N0
[6]
5. (a) (i) $\frac{7}{24}$
(ii) evidence of multiplying along the branches
e.g. $\frac{2}{3} \times \frac{5}{8}, \frac{1}{3} \times \frac{7}{8}$
adding probabilities of two mutually exclusive paths
e.g. $\left(\frac{1}{3} \times \frac{7}{8}\right)+\left(\frac{2}{3} \times \frac{3}{8}\right),\left(\frac{1}{3} \times \frac{1}{8}\right)+\left(\frac{2}{3} \times \frac{5}{8}\right)$
$\mathrm{P}(F)=\frac{13}{24}$
A1 N1
(b) (i) $\frac{1}{3} \times \frac{1}{8}$
(A1)

$$
\frac{1}{24}
$$

A1
(ii) recognizing this is $\mathrm{P}(E \mid F)$
e.g. $\frac{7}{24} \div \frac{13}{24}$

$$
\frac{168}{312}\left(=\frac{7}{13}\right)
$$

$$
\mathrm{A} 2 \quad \mathrm{~N} 3
$$

(c)

X (cost in euros)	0	3	6
$\mathbf{P}(X)$	$\frac{1}{9}$	$\frac{\mathbf{4}}{9}$	$\frac{\mathbf{4}}{9}$

(d) correct substitution into $\mathrm{E}(X)$ formula
e.g. $0 \times \frac{1}{9}+3 \times \frac{4}{9}+6 \times \frac{4}{9}, \frac{12}{9}+\frac{24}{9}$
$\mathrm{E}(X)=4$ (euros)
A1 N2
[14]
6. (a) $p=\frac{4}{5}$
(b) multiplying along the branches
e.g. $\frac{1}{5} \times \frac{1}{4}, \frac{12}{40}$
adding products of probabilities of two mutually exclusive paths
e.g. $\frac{1}{5} \times \frac{1}{4}+\frac{4}{5} \times \frac{3}{8}, \frac{1}{20}+\frac{12}{40}$
$\mathrm{P}(B)=\frac{14}{40}\left(=\frac{7}{20}\right)$
(c) appropriate approach which must include A^{\prime} (may be seen on diagram)
(M1)
e.g. $\frac{\mathrm{P}\left(A^{\prime} \cap B\right)}{\mathrm{P}(B)}\left(\right.$ do not accept $\left.\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\right)$
$\mathrm{P}\left(A^{\prime} \mid B\right)=\frac{\frac{4}{5} \times \frac{3}{8}}{\frac{7}{20}}$
$\mathrm{P}\left(A^{\prime} \mid B\right)=\frac{12}{14}\left(=\frac{6}{7}\right)$
7. (a) $\quad \mathrm{P}(A)=\frac{1}{11}$
(b) $\quad \mathrm{P}(B \mid A)=\frac{2}{10}$
(c) recognising that $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B \mid A)$ correct values
e.g. $\mathrm{P}(A \cap B)=\frac{1}{11} \times \frac{2}{10}$
$\mathrm{P}(A \cap B)=\frac{2}{110}$
8. (a)

3,9	$\mathbf{4 , 9}$	$\mathbf{5 , 9}$
3,10	$\mathbf{4 , 1 0}$	$\mathbf{5 , 1 0}$
3,10	$\mathbf{4 , 1 0}$	$\mathbf{5 , 1 0}$

(b) $12,13,14,15$ (accept $12,13,13,13,14,14,14,15,15)$
(c) $\mathrm{P}(12)=\frac{1}{9}, \mathrm{P}(13)=\frac{3}{9}, \mathrm{P}(14)=\frac{3}{9}, \mathrm{P}(15)=\frac{2}{9}$

A2 N 2

A2 N 2

A2 N 2
(d) correct substitution into formula for $\mathrm{E}(X)$

A1
e.g. $\mathrm{E}(S)=12 \times \frac{1}{9}+13 \times \frac{3}{9}+14 \times \frac{3}{9}+15 \times \frac{2}{9}$
$\mathrm{E}(S)=\frac{123}{9}$
A2 N 2
e.g. $\frac{4}{9} \times 50-\frac{5}{9} \times 30$
$\mathrm{E}(A)=\frac{50}{9}$
amount at end $=$ expected gain for 1 game $\times 36$
$=200$ (dollars)
(M1)
A1 N2

METHOD 2

attempt to find expected number of wins and losses
e.g. $\frac{4}{5} \times 36, \frac{5}{9} \times 36$
attempt to find expected gain $\mathrm{E}(G)$
e.g. $16 \times 50-30 \times 20$
$\mathrm{E}(G)=200$ (dollars)
9. (a) appropriate approach
e.g. tree diagram or a table
$\mathrm{P}($ win $)=\mathrm{P}(H \cap W)+\mathrm{P}(A \cap W))$
$=(0.65)(0.83)+(0.35)(0.26)$
$=0.6305($ or 0.631$)$

A1
A1 N2
(b) evidence of using complement
(M1)
e.g. $1-p, 0.3695$
choosing a formula for conditional probability
e.g. $\mathrm{P}\left(H \mid W^{\prime}\right)=\frac{\mathrm{P}\left(W^{\prime} \cap H\right)}{\mathrm{P}\left(W^{\prime}\right)}$
correct substitution
e.g. $\frac{(0.65)(0.17)}{0.3695}\left(=\frac{0.1105}{0.3695}\right)$
$\mathrm{P}($ home $)=0.299$
A1

A1 N3
[8]

A1A1 N2
Note: Award Al for vertical line to right of mean, A1 for shading to right of their vertical line.
(b) evidence of recognizing symmetry
$e . g .105$ is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part,
$105-100=100-d$
$d=95$
(c) evidence of using complement
e.g. $1-0.32,1-p$
$\mathrm{P}(d<X<105)=0.68$
A1 N2
[6]
11. (a) (i) evidence of substituting into $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
e.g. $75+55-100$, Venn diagram

30
(ii) 45

A1 N2

A1 N1
(b) (i) METHOD 1
evidence of using complement, Venn diagram
(M1)
e.g. $1-p, 100-30$

$$
\frac{70}{100}\left(=\frac{7}{10}\right)
$$

$$
\mathrm{A} 1 \quad \mathrm{~N} 2
$$

METHOD 2

attempt to find P (only one sport), Venn diagram

> (M1)
e.g. $\frac{25}{100}+\frac{45}{100}$

$$
\frac{70}{100}\left(=\frac{7}{10}\right)
$$

A1 N2
(ii) $\frac{45}{70}\left(=\frac{9}{14}\right)$

$$
\mathrm{A} 2 \quad \mathrm{~N} 2
$$

(c) valid reason in words or symbols
e. g. $\mathrm{P}(A \cap B)=0$ if mutually exclusive, $\mathrm{P}(A \cap B)$ if not mutually exclusive correct statement in words or symbols

$$
\mathrm{A} 1 \quad \mathrm{~N} 2
$$

e.g. $\mathrm{P}(A \cap B)=0.3, \mathrm{P}(A \cup B) \neq \mathrm{P}(A)+\mathrm{P}(B), \mathrm{P}(A)+\mathrm{P}(B)>1$, some students play both sports, sets intersect
(d) valid reason for independence e.g. $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B), \mathrm{P}(B \mid A)=\mathrm{P}(B)$
correct substitution
e.g. $\frac{30}{100} \neq \frac{75}{100} \times \frac{55}{100}, \frac{30}{55} \neq \frac{75}{100}$
12. (a) (i) $\mathrm{P}(B)=\frac{3}{4}$

A1 N1
(ii) $\mathrm{P}(R)=\frac{1}{4}$
(b) $\quad p=\frac{3}{4}$

$$
s=\frac{1}{4}, t=\frac{3}{4}
$$

(c) (i) $\mathrm{P}(X=3)$

$$
\begin{aligned}
& =P(\text { getting } 1 \text { and } 2)=\frac{1}{4} \times \frac{3}{4} \\
& =\frac{3}{16}
\end{aligned}
$$

(ii) $\mathrm{P}(X=2)=\frac{1}{4} \times \frac{1}{4}+\frac{3}{4}\left(\right.$ or $\left.1-\frac{3}{16}\right)$

$$
=\frac{13}{16}
$$

(d) (i)

X	2	3
$\mathrm{P}(X=x)$	$\frac{13}{16}$	$\frac{3}{16}$

(ii) evidence of using $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$

$$
\begin{aligned}
\mathrm{E}(X) & =2\left(\frac{13}{16}\right)+3\left(\frac{3}{16}\right) \\
& =\frac{35}{16}\left(=2 \frac{3}{16}\right)
\end{aligned}
$$

A1 N2
(e) win $\$ 10 \Rightarrow$ scores 3 one time, 2 other time
$\mathrm{P}(3) \times \mathrm{P}(2)=\frac{13}{16} \times \frac{3}{16}$ (seen anywhere)
e.g. $\mathrm{P}(3) \times \mathrm{P}(2)+\mathrm{P}(2) \times \mathrm{P}(3), 2\left(\frac{13}{16} \times \frac{3}{16}\right)$,
$\frac{36}{256}+\frac{3}{256}+\frac{36}{256}+\frac{3}{256}$
$\mathrm{P}($ win $\$ 10)=\frac{78}{256} \quad\left(=\frac{39}{128}\right)$
A1 N3
[16]
13. (a) (i) correct calculation
e.g. $\frac{9}{20}+\frac{5}{20}-\frac{2}{20}, \frac{4+2+3+3}{20}$
$\mathrm{P}($ male or tennis $)=\frac{12}{20}\left(=\frac{3}{5}\right)$
A1 N2
(ii) correct calculation
e.g. $\frac{6}{20} \div \frac{11}{20}, \frac{3+3}{11}$
$P($ not football \mid female $)=\frac{6}{11}$
A1 N2
(b) $\mathrm{P}($ first not football $)=\frac{11}{20}, \mathrm{P}($ second not football $)=\frac{10}{19}$
$P($ neither football $)=\frac{11}{20} \times \frac{10}{19}$
$\mathrm{P}($ neither football $)=\frac{110}{380}\left(=\frac{11}{38}\right)$
14. (a) evidence of using $\sum p_{i}=1$
correct substitution
e.g. $10 k^{2}+3 k+0.6=1,10 k^{2}+3 k-0.4=0$
$k=0.1$
(b) evidence of using $\mathrm{E}(X)=\sum p_{i} x_{i}$
(M1) correct substitution
e.g. $-1 \times 0.2+2 \times 0.4+3 \times 0.3$
$\mathrm{E}(X)=1.5$
A1 N2
15. (a) evidence of binomial distribution (seen anywhere)
e.g. $X \sim B\left(3, \frac{1}{4}\right)$
mean $=\frac{3}{4}(=0.75)$
A1 N2
(b) $\mathrm{P}(X=2)=\binom{3}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)$
$\mathrm{P}(X=2)=0.141 \quad\left(=\frac{9}{64}\right)$
(c) evidence of appropriate approach
e.g. complement, $1-\mathrm{P}(X=0)$, adding probabilities
$\mathrm{P}(X=0)=(0.75)^{3} \quad\left(=0.422, \frac{27}{64}\right)$
$\mathrm{P}(X \geq 1)=0.578 \quad\left(=\frac{37}{64}\right)$
16. (a) $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)(=0.6 x)$
(b) (i) evidence of using $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B)$ correct substitution e.g. $0.80=0.6+x-0.6 x, 0.2=0.4 x$ $x=0.5$
(ii) $\mathrm{P}(A \cap B)=0.3$

A1 N1
(M1)
A1
A1 N2

A1 N1
(c) valid reason, with reference to $\mathrm{P}(A \cap B)$
e.g. $\mathrm{P}(A \cap B) \neq 0$
17. (a) (i) number of ways of getting $X=6$ is 5

$$
\mathrm{P}(X=6)=\frac{5}{36}
$$

$$
\mathrm{A} 1 \quad \mathrm{~N} 2
$$

(ii) number of ways of getting $X>6$ is 21

$$
\mathrm{P}(X>6)=\frac{21}{36}\left(=\frac{7}{12}\right)
$$

(iii) $\quad \mathrm{P}(X=7 \mid X>5)=\frac{6}{26}\left(=\frac{3}{13}\right)$

A2 N 2
(b) evidence of substituting into $\mathrm{E}(X)$ formula
finding $\mathrm{P}(X<6)=\frac{10}{36}$ (seen anywhere)
evidence of using $\mathrm{E}(W)=0$
correct substitution (M1)
e.g. $3\left(\frac{5}{36}\right)+1\left(\frac{21}{36}\right)-k\left(\frac{10}{36}\right)=0,15+21-10 k=0$
$k=\frac{36}{10}(=3.6)$
A1 N4

18. METHOD 1

(a) $\sigma=10$
$1.12 \times 10=11.2$
$11.2+100$
$x=111.2$
(b) $100-11.2$
$=88.8$
(A1)
A1
(M1)
A1 N2
(M1)
A1 N2

METHOD 2

(a) $\sigma=10$

Evidence of using standardisation formula
(A1)
(M1)
A1
A1 N2
(b) $\frac{100-x}{10}=1.12$
$x=88.8$
A1 N2
[6]
19. (a) For summing to 1
e.g. $\frac{1}{5}+\frac{2}{5}+\frac{1}{10}+x=1$
$x=\frac{3}{10}$

$$
\text { A1 } \quad \mathrm{N} 2
$$

(b) For evidence of using $\mathrm{E}(X)=\sum x f(x)$

Correct calculation
e.g. $\frac{1}{5} \times 1+2 \times \frac{2}{5}+3 \times \frac{1}{10}+4 \times \frac{3}{10}$
$\mathrm{E}(X)=\frac{25}{10}(=2.5)$
(c) $\frac{1}{10} \times \frac{1}{10}$
$\frac{1}{100}$
A1 N2
[7]
20. (a) Evidence of using the complement e.g. $1-0.06$ $p=0.94$
(b) For evidence of using symmetry

Distance from the mean is 7
e.g. diagram, $D=$ mean -7
$D=10$
(c) $\mathrm{P}(17<H<24)=0.5-0.06$
(M1)
$=0.44$
A1
$\mathrm{E}($ trees $)=200 \times 0.44$
$=88$
(M1)

A1 N2
[9]
21. (a) (i) Attempt to find $\mathrm{P}(3 H)=\left(\frac{1}{3}\right)^{3}$

$$
=\frac{1}{27}
$$

(ii) Attempt to find $\mathrm{P}(2 H, 1 T)$
$=3\left(\frac{1}{3}\right)^{2} \frac{2}{3}$
$=\frac{2}{9}$
(b) (i) Evidence of using $n p\left(\frac{1}{3} \times 12\right)$
expected number of heads $=4$
(ii) 4 heads, so 8 tails
$\mathrm{E}($ winnings $)=4 \times 10-8 \times 6(=40-48)$ $=-\$ 8$
(M1)
A1 N 2
(A1)
(M1)
A1 N1
[10]
22. (a) $\frac{3}{4}$
(b) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cup B)$

$$
=\frac{2}{5}+\frac{3}{4}-\frac{7}{8}
$$

$$
=\frac{11}{40} \quad(0.275)
$$

A1 N 2

(c) $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\left(=\frac{\frac{11}{40}}{\frac{3}{4}}\right)$
 $$
=\frac{11}{30}(0.367)
$$

23. (a) $\frac{46}{97}(=0.474)$
(b) $\frac{13}{51}(=0.255)$
(c) $\frac{59}{97}(=0.608)$
24. (a) $\frac{19}{120}(=0.158)$

A1 N1
(b) $35-(8+5+7)(=15)$

Probability $=\frac{15}{120}\left(=\frac{3}{24}=\frac{1}{8}=0.125\right)$
(M1)
A1 N2
(c) Number studying $=76$

Number not studying $=120-$ number studying $=44$
Probability $=\frac{44}{120}\left(=\frac{11}{30}=0.367\right)$

A1 N3
25. (a)

(b) $\left(\frac{4}{10} \times \frac{6}{9}\right)+\left(\frac{6}{10} \times \frac{4}{9}\right)$

$$
=\frac{48}{90}\left(\frac{8}{15}, 0.533\right)
$$

26. (a) For summing to 1

$$
\begin{array}{r}
e g 0.1+a+0.3+b=1 \\
a+b=0.6
\end{array}
$$

A1 N2
(b) evidence of correctly using $\mathrm{E}(X)=\sum x f(x)$
$e g 0 \times 0.1+1 \times a+2 \times 0.3+3 \times b, 0.1+a+0.6+3 b=1.5$
Correct equation $0+a+0.6+3 b=1.5 \quad(a+3 b=0.9)$
Solving simultaneously gives
$a=0.45 \quad b=0.15$
A1A1 N3
[6]
27. (a) Independent $\Rightarrow \mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B) \quad(=0.3 \times 0.8)$

$$
\begin{equation*}
=0.24 \tag{M1}
\end{equation*}
$$

(b) $\quad \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \quad(=0.3+0.8-0.24)$

$$
=0.86
$$

(c) No, with valid reason eg $\mathrm{P}(A \cap B) \neq 0$ or $\mathrm{P}(A \cup B) \neq \mathrm{P}(A)+\mathrm{P}(B)$ or correct numerical equivalent
28. (a) For using $\sum p=1 \quad(0.4+p+0.2+0.07+0.02=1)$

$$
p=0.31
$$

A1 N2
(b) For using $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$

$$
\begin{aligned}
\mathrm{E}(X) & =1(0.4)+2(0.31)+3(0.2)+4(0.07)+5(0.02) \\
& =2
\end{aligned}
$$

$$
\text { A2 } \mathrm{N} 2
$$

29. (a) $\mathrm{P}(P \mid C)=\frac{20}{20+40}$

$$
=\frac{1}{3}
$$

(b) $\mathrm{P}\left(P \mid C^{\prime}\right)=\frac{30}{30+60}$

$$
=\frac{1}{3}
$$

(c) Investigating conditions, or some relevant calculations P is independent of C, with valid reason

$$
\frac{20}{150}=\frac{50}{150} \times \frac{60}{150}(\text { ie } \mathrm{P}(P \cap C)=\mathrm{P}(P) \times \mathrm{P}(C))
$$

30. (a) Adding probabilities

Evidence of knowing that sum $=1$ for probability distribution eg Sum greater than 1 , sum $=1.3$, sum does not equal 1
(b) Equating sum to $1(3 k+0.7=1)$

$$
k=0.1
$$

(c) (i) $\mathrm{P}(X=0)=\frac{0+1}{20}$

$$
=\frac{1}{20}
$$

A1 N2
(ii) Evidence of using $\mathrm{P}(X>0)=1-\mathrm{P}(X=0)$

$$
\begin{equation*}
\left(\text { or } \frac{4}{20}+\frac{5}{20}+\frac{10}{20}\right) \tag{M1}
\end{equation*}
$$

$$
=\frac{19}{20}
$$

A1 N 2
31. (a)

(b) (i) $\mathrm{P}(M$ and $G)=\frac{1}{3} \times \frac{2}{5}\left(=\frac{2}{15}=0.133\right)$

A1 N1
(ii) $\mathrm{P}(G)=\frac{1}{3} \times \frac{2}{5}+\frac{2}{3} \times \frac{8}{10}$

$$
=\frac{10}{15}\left(=\frac{2}{3}=0.667\right)
$$

[^0](iii) $\mathrm{P}(M \mid G)=\frac{\mathrm{P}(M \cap G)}{\mathrm{P}(G)}=\frac{\frac{2}{15}}{\frac{2}{3}}$
$$
=\frac{1}{5} \text { or } 0.2
$$
(A1)(A1)

A1 N3
(c) $\mathrm{P}(R)=1-\frac{2}{3}=\frac{1}{3}$

Evidence of using a correct formula
$\mathrm{E}($ win $)=2 \times \frac{1}{3}+5 \times \frac{2}{3}\left(\right.$ or $\left.2 \times \frac{1}{3} \times \frac{3}{5}+2 \times \frac{2}{3} \times \frac{2}{10}+5 \times \frac{1}{3} \times \frac{2}{5}+5 \times \frac{2}{3} \times \frac{8}{10}\right)$ $=\$ 4 \quad\left(\right.$ accept $\left.\frac{12}{3}, \frac{60}{15}\right)$
32. (a) For attempting to use the formula $(\mathrm{P}(E \cap F)=\mathrm{P}(E) \mathrm{P}(F))$

Correct substitution or rearranging the formula
eg $\frac{1}{3}=\frac{2}{3} \mathrm{P}(F), \mathrm{P}(F)=\frac{\mathrm{P}(E \cap F)}{\mathrm{P}(E)}, \mathrm{P}(F)=\frac{\frac{1}{3}}{\frac{2}{3}}$
$\mathrm{P}(F)=\frac{1}{2}$
A1 N2
(b) For attempting to use the formula $(\mathrm{P}(E \cup F)=\mathrm{P}(E)+\mathrm{P}(F)$

$$
\left.\left.\begin{array}{l}
-(\mathrm{P}(E \cap F)) \\
\mathrm{P}(E \cup F)
\end{array}\right)=\frac{2}{3}+\frac{1}{2}-\frac{1}{3}\right)
$$

A1 N 2
[6]
33. (a) (i) Attempt to set up sample space,

Any correct representation with 16 pairs
eg $\quad 1,1 \quad 2,1 \quad 3,1 \quad 4,1$
$\begin{array}{llll}1,2 & 2,2 & 3,2 & 4,2\end{array}$
1,3 $\quad 2,3 \quad 3,3 \quad 4,3$
$\begin{array}{llll}1,4 & 2,4 & 3,4 & 4,4\end{array}$

(ii) Probability of two 4 s is $\frac{1}{16}(=0.0625)$
(M1)
A2 N3

A1 N1
(b)

x	0	1	2
$\mathrm{P}(X=x)$	$\frac{9}{16}$	$\frac{6}{16}$	$\frac{1}{16}$

(c) Evidence of selecting appropriate formula for $\mathrm{E}(X)$
$e g \mathrm{E}(X)=\sum_{0}^{2} x \mathrm{P}(X=x), \mathrm{E}(X)=n p$
Correct substitution

$$
\begin{aligned}
e g \mathrm{E}(X) & =0 \times \frac{9}{16}+1 \times \frac{6}{16}+2 \times \frac{1}{16}, \mathrm{E}(X)=2 \times \frac{1}{4} \\
\mathrm{E}(X) & =\frac{8}{16}\left(=\frac{1}{2}\right)
\end{aligned}
$$

$$
\mathrm{A} 1 \quad \mathrm{~N} 2
$$

[10]
34. (a) Using $\mathrm{E}(X)=\sum_{0}^{2} x \mathrm{P}(X=x)$

Substituting correctly $E(X)=0 \times \frac{3}{10}+1 \times \frac{6}{10}+2 \times \frac{1}{10}$

$$
=\frac{8}{10}(0.8)
$$

A1 3
(b) (i)

A1A1A1 3
Note: Award (A1) for each complementary pair of probabilities,
ie $\frac{4}{6}$ and $\frac{2}{6}, \frac{3}{5}$ and $\frac{2}{5}, \frac{4}{5}$ and $\frac{1}{5}$.
(ii) $\mathrm{P}(Y=0)=\frac{2}{5} \times \frac{1}{5}=\frac{2}{30}$

$$
\mathrm{P}(Y=1)=\mathrm{P}(R G)+\mathrm{P}(G R) \quad\left(=\frac{4}{6} \times \frac{2}{5}+\frac{2}{6} \times \frac{4}{5}\right)
$$

$$
=\frac{16}{30}
$$

$$
\begin{equation*}
\mathrm{P}(Y=2)=\frac{4}{6} \times \frac{3}{5}=\frac{12}{30} \tag{A1}
\end{equation*}
$$

For forming a distribution

y	0	1	2
$\mathrm{P}(Y=y)$	$\frac{2}{30}$	$\frac{16}{30}$	$\frac{12}{30}$

(c) $\quad \mathrm{P}(\mathrm{Bag} \mathrm{A})=\frac{2}{6}\left(=\frac{1}{3}\right)$
$P(\operatorname{BagA~B})=\frac{4}{6}\left(=\frac{2}{3}\right)$
For summing $\mathrm{P}(A \cap R R)$ and $\mathrm{P}(B \cap R R)$
Substituting correctly $\mathrm{P}(R R)=\frac{1}{3} \times \frac{1}{10}+\frac{2}{3} \times \frac{12}{30}$

$$
=\frac{27}{90}\left(\frac{3}{10}, 0.3\right)
$$

(d) For recognising that $\mathrm{P}(1$ or $6 \mid R R)=\mathrm{P}(A \mid R R)=\frac{\mathrm{P}(A \cap R R)}{\mathrm{P}(R R)}$

$$
\begin{aligned}
& =\frac{1}{30} \div \frac{27}{90} \\
& =\frac{3}{27}\left(\frac{1}{9}, 0.111\right)
\end{aligned}
$$

35. Total number of possible outcomes $=36$ (may be seen anywhere)
(a) $\mathrm{P}(E)=\mathrm{P}(1,1)+\mathrm{P}(2,2)+\mathrm{P}(3,3)+\mathrm{P}(4,4)+\mathrm{P}(5,5)+\mathrm{P}(6,6)$

$$
\begin{equation*}
=\frac{6}{36} \tag{A1}
\end{equation*}
$$

(b) $\quad \mathrm{P}(F)=\mathrm{P}(6,4)+\mathrm{P}(5,5)+\mathrm{P}(4,6)$

$$
=\frac{3}{36}
$$

(A1) (C1)
(c) $\mathrm{P}(E \cup F)=\mathrm{P}(E)+\mathrm{P}(F)-\mathrm{P}(E \cap F)$
$\mathrm{P}(E \cap F)=\frac{1}{36}$
$\mathrm{P}(E \cup F)=\frac{6}{36}+\frac{3}{36}-\frac{1}{36}\left(=\frac{8}{36}=\frac{2}{9}, 0.222\right)$
[6]
36. (a) (i) $\quad \mathrm{P}(A)=\frac{80}{210}=\left(\frac{8}{21}=0.381\right)$
(A1) (N1)
(ii) $\mathrm{P}($ year 2 art $)=\frac{35}{210}=\left(\frac{1}{6}=0.167\right)$
(A1) (N1)
(iii) No (the events are not independent, or, they are dependent)
(A1) (N1)

EITHER

$$
\begin{align*}
& \mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B) \text { (to be independent) } \tag{M1}\\
& \mathrm{P}(B)=\frac{100}{210}\left(=\frac{10}{21}=0.476\right) \tag{A1}\\
& \frac{1}{6} \neq \frac{8}{21} \times \frac{10}{21} \tag{A1}
\end{align*}
$$

OR

$$
\begin{aligned}
& \mathrm{P}(A)=\mathrm{P}(A \mid B) \text { (to be independent) } \\
& \mathrm{P}(A \mid B)=\frac{35}{100} \\
& \frac{8}{21} \neq \frac{35}{100}
\end{aligned}
$$

OR

$\mathrm{P}(B)=\mathrm{P}(B \mid A)$ (to be independent)

$$
\begin{equation*}
\mathrm{P}(B)=\frac{100}{210}\left(=\frac{10}{21}=0.476\right), \mathrm{P}(B \mid A)=\frac{35}{80} \tag{M1}
\end{equation*}
$$

$$
\frac{35}{80} \neq \frac{100}{210}
$$

(A1) 6
Note: Award the first (M1) only for a mathematical interpretation of independence.
(b) $\quad n$ (history) $=85$

$$
\begin{equation*}
\mathrm{P}(\text { year } 1 \mid \text { history })=\frac{50}{85}=\left(\frac{10}{17}=0.588\right) \tag{A1}
\end{equation*}
$$

(c) $\left(\frac{110}{210} \times \frac{100}{209}\right)+\left(\frac{100}{210} \times \frac{110}{209}\right)\left(=2 \times \frac{110}{210} \times \frac{100}{209}\right)$
(M1)(A1)(A1)

$$
=\frac{200}{399}(=0.501)
$$

(A1)(N2) 4
37. Correct probabilities $\left(\frac{13}{24}\right),\left(\frac{12}{23}\right),\left(\frac{11}{22}\right),\left(\frac{10}{21}\right)$

Multiplying $\left(\frac{13}{24} \times \frac{12}{23} \times \frac{11}{22} \times \frac{10}{21}\right)$
(A1)(A1)(A1)(A1)
$\mathrm{P}(4$ girls $)=\frac{17160}{255024}\left(=\frac{65}{966}=0.0673\right)$
(A1) (C6)
38. For using $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
(M1)
Let $\mathrm{P}(A)=x$ then $\mathrm{P}(B)=3 x$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \times 3 \mathrm{P}(A)\left(=3 x^{2}\right)$
$0.68=x+3 x-3 x^{2}$
$3 x^{2}-4 x+0.68=0$
$x=0.2 \quad(x=1.133$, not possible $)$
(A2)
$\mathrm{P}(B)=3 x=0.6$
(A1) (C6)
[6]
39. (a)

(A1)(A1)(A1)
(b) (i) $\quad \mathrm{P}(R \cap S)=\frac{1}{3} \times \frac{4}{5}\left(=\frac{4}{15}=0.267\right)$
(A1) (N1)
(ii) $\mathrm{P}(S)=\frac{1}{3} \times \frac{4}{5}+\frac{2}{3} \times \frac{1}{4}$

$$
=\frac{13}{30}(=0.433)
$$

(A1)(A1)
(A1) (N3)
(iii) $\mathrm{P}(R \mid S)=\frac{\frac{4}{15}}{\frac{13}{30}}$

$$
\begin{equation*}
=\frac{8}{13}(=0.615) \tag{A1}
\end{equation*}
$$

40. (a) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

$$
\begin{align*}
\mathrm{P}(A \cap B) & =\frac{1}{2}+\frac{3}{4}-\frac{7}{8} \tag{M1}\\
& =\frac{3}{8} \tag{A1}
\end{align*}
$$

(b) $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\left(=\frac{\frac{3}{8}}{\frac{3}{4}}\right)$

$$
\begin{equation*}
=\frac{1}{2} \tag{A1}
\end{equation*}
$$

(c) Yes, the events are independent
(A1) (C1)

EITHER

$\mathrm{P}(A \mid B)=\mathrm{P}(A)$
(R1) (C1)
OR
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
41. (a)

(A1)(A1)(A1)(A1) 4
Note: Award (A1) for the given probabilities $\left(\frac{7}{8}, \frac{1}{4}, \frac{3}{5}\right)$ in the
correct positions, and (A1) for each bold value.
(b) Probability that Dumisani will be late is $\frac{7}{8} \times \frac{1}{4}+\frac{1}{8} \times \frac{3}{5}$

$$
=\frac{47}{160}(0.294)
$$

(c) $\quad \mathrm{P}(W \mid L)=\frac{\mathrm{P}(W \cap L)}{\mathrm{P}(L)}$

$$
\begin{align*}
& \mathrm{P}(W \cap L)=\frac{7}{8} \times \frac{1}{4} \tag{A1}\\
& \mathrm{P}(L)=\frac{47}{160} \tag{A1}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{P}(W \mid L)=\frac{\frac{7}{32}}{\frac{47}{160}} \tag{M1}
\end{equation*}
$$

$$
=\frac{35}{47}(=0.745)
$$

(A1) (N3) 4
[11]
42. (a) $\frac{120}{360}\left(=\frac{1}{3}=0.333\right)$
(b) $\frac{90+120}{360}\left(=\frac{210}{360}=\frac{7}{12}=0.583\right)$
(A1)(A1) (C2)
(c) $\frac{90}{210}\left(=\frac{3}{7}=0.429\right) \quad\left(\right.$ Accept $\left.\frac{\frac{1}{4}}{\frac{7}{12}}\right)$
(A1)(A1) (C2)
43. (a)

(b) (i) 0.4×0.9
(A1)
$=0.36$
(ii) $0.36+0.6 \times 0.8 \quad(=0.36+0.48)$

$$
=0.84
$$

(A1) (N2)
(A1)
(A1) (N1)
(iii) $\frac{\mathrm{P} \text { (red } \cap \text { grows })}{\mathrm{P} \text { (grows) }} \quad$ (may be implied)
$=\frac{0.36}{0.84}$

$$
=0.429\left(\frac{3}{7}\right)
$$

44. (a) Independent (I)
(b) Mutually exclusive (M)
(c) Neither (N)

Note: Award part marks if the candidate shows understanding of I and/or M

$$
\begin{aligned}
& \text { eg I } \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B) \\
& \text { M } \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)
\end{aligned}
$$

45. (a)

$$
\begin{align*}
& n(E \cup H)=a+b+c=88-39=49 \tag{M1}\\
& n(E \cup H)= 32+28-b=49 \\
& \quad 00-49=b=11 \tag{A1}\\
& a=32-11=21 \tag{A1}\\
& c=28-11=17
\end{align*}
$$

(A1)
Note: Award (A3) for correct answers with no working.
(b) (i) $\mathrm{P}(E \cap H)=\frac{11}{88}=\frac{1}{8}$
(ii) $\mathrm{P}\left(H^{\prime} \mid E\right)=\frac{\mathrm{P}\left(H^{\prime} \cap E\right)}{\mathrm{P}(E)}=\frac{\frac{21}{88}}{\frac{32}{88}}$

$$
\begin{equation*}
=\frac{21}{32}(=0.656) \tag{A1}
\end{equation*}
$$

OR
Required probability $=\frac{21}{32}$
(c) (i) $\mathrm{P}($ none in economics $)=\frac{56 \times 55 \times 54}{88 \times 87 \times 86}$

$$
=0.253
$$

(M1)(A1)
(A1)

$$
\begin{aligned}
& \text { Notes: Award }(M 0)(A 0)(A 1)(f t) \text { for }\left(\frac{56}{88}\right)^{3}=0.258 \text {. } \\
& \text { Award no marks for } \frac{56 \times 55 \times 54}{88 \times 88 \times 88}
\end{aligned}
$$

(ii) $\mathrm{P}($ at least one $)=1-0.253$

$$
\begin{equation*}
=0.747 \tag{M1}
\end{equation*}
$$

OR

$$
\begin{equation*}
3\left(\frac{32}{88} \times \frac{56}{87} \times \frac{55}{86}\right)+3\left(\frac{32}{88} \times \frac{31}{87} \times \frac{56}{86}\right)+\frac{32}{88} \times \frac{31}{87} \times \frac{30}{86} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
=0.747 \tag{M1}
\end{equation*}
$$

(A1) 5
46. $\quad \mathrm{P}(\mathrm{RR})=\frac{7}{12} \times \frac{6}{11}\left(=\frac{7}{22}\right)$

$$
\mathrm{P}(\mathrm{YY})=\frac{5}{12} \times \frac{4}{11}\left(=\frac{5}{33}\right)
$$

(M1)(A1)

$$
\mathrm{P}(\text { same colour })=\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{YY})
$$

(M1)

$$
=\frac{31}{66}(=0.470,3 \mathrm{sf})
$$

Note: Award C2 for $\left(\frac{7}{12}\right)^{2}+\left(\frac{5}{12}\right)^{2}=\frac{74}{144}$.
(A1) (C6)
[6]
47. (a) $\mathrm{P}=\frac{22}{23}(=0.957(3 \mathrm{sf}))$
(A2) (C2)
(b)

$$
\begin{align*}
& \text { OR } \\
& \mathrm{P}=\mathrm{P}(\mathrm{RRG})+\mathrm{P}(\mathrm{RGR})+\mathrm{P}(\mathrm{GRR}) \\
& \frac{22}{25} \times \frac{21}{24} \times \frac{3}{23}+\frac{22}{25} \times \frac{3}{24} \times \frac{21}{23}+\frac{3}{25} \times \frac{22}{24} \times \frac{21}{23} \\
&= \frac{693}{2300}(=0.301(3 \mathrm{sf})) \tag{M1}
\end{align*}
$$

48. Sample space $=\{(1,1),(1,2) \ldots(6,5),(6,6)\}$
(This may be indicated in other ways, for example, a grid or a tree diagram, partly or fully completed)

(a) $\mathrm{P}(S<8)=\frac{6+5+4+3+2+1}{36}$

$$
\begin{equation*}
=\frac{7}{12} \tag{M1}
\end{equation*}
$$

OR
$\mathrm{P}(S<8)=\frac{7}{12}$
(b) $\quad \mathrm{P}($ at least one 3$)=\frac{1+1+6+1+1+1}{36}$

$$
\begin{equation*}
=\frac{11}{36} \tag{M1}
\end{equation*}
$$

OR
$P($ at least one 3$)=\frac{11}{36}$
(c) $\quad \mathrm{P}($ at least one $3 \mid \mathrm{S}<8)=\frac{\mathrm{P}(\text { at least one } 3 \cap S<8)}{\mathrm{P}(S<8)}$

$$
\begin{align*}
& =\frac{7 / 36}{7 / 12} \tag{A1}\\
& =\frac{1}{3}
\end{align*}
$$

49. (a) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \Rightarrow \mathrm{P}(A \cap B)=\mathrm{P}(A)+$ $\mathrm{P}(B)-\mathrm{P}(A \cup B)$

$$
\begin{align*}
& =\frac{3}{11}+\frac{4}{11}-\frac{6}{11} \tag{M1}\\
& =\frac{1}{11}(0.0909)
\end{align*}
$$

(b) For independent events, $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(\mathrm{B})$

$$
\begin{align*}
& =\frac{3}{11} \times \frac{4}{11} \tag{A1}\\
& =\frac{12}{121}(0.0992)
\end{align*}
$$

(A1) (C3)
50. $\mathrm{P}($ different colours $)=1-[\mathrm{P}(\mathrm{GG})+\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{WW})]$

$$
\begin{align*}
& =1-\left(\frac{10}{6} \times \frac{9}{25}+\frac{10}{26} \times \frac{9}{25}+\frac{6}{26} \times \frac{5}{25}\right) \tag{A1}\\
& =1-\left(\frac{210}{650}\right) \tag{A1}\\
& =\frac{44}{65}(=0.677, \text { to } 3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

OR

$\mathrm{P}($ different colours $)=\mathrm{P}(\mathrm{GR})+\mathrm{P}(\mathrm{RG})+\mathrm{P}(\mathrm{GW})+\mathrm{P}(\mathrm{WG})+\mathrm{P}(\mathrm{RW})+\mathrm{P}(\mathrm{WR}) \quad(\mathrm{A} 1)$
$=4\left(\frac{10}{26} \times \frac{6}{25}\right)+2\left(\frac{10}{26} \times \frac{10}{25}\right)$
$=\frac{44}{65}(=0.677$, to 3 sf$)$
(A1) (C4)
51. (a) $s=7.41(3 \mathrm{sf})$
(G3) 3
(b)

Weight (W)	$W \leq 85$	$W \leq 90$	$W \leq 95$	$W \leq 100$	$W \leq 105$	$W \leq 110$	$W \leq 115$
Number of packets	5	15	$\mathbf{3 0}$	$\mathbf{5 6}$	$\mathbf{6 9}$	$\mathbf{7 6}$	80

(c) (i) From the graph, the median is approximately 96.8. Answer: 97 (nearest gram).
(A2)
(ii) From the graph, the upper or third quartile is approximately 101.2. Answer: 101 (nearest gram).
(A2) 4
(d) $\operatorname{Sum}=0$, since the sum of the deviations from the mean is zero.

OR
$\sum\left(W_{i}-\bar{W}\right)=\sum W_{i}-\left(80 \frac{\sum W_{i}}{80}\right)=0$
(e) Let A be the event: $W>100$, and B the event: $85<W \leq 110$
$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$\mathrm{P}(A \cap B)=\frac{20}{80}$
$\mathrm{P}(B)=\frac{71}{80}$
$\mathrm{P}(A \mid B)=0.282$

OR

71 packets with weight $85<W \leq 110$.
Of these, 20 packets have weight $W>100$.
Required probability $=\frac{20}{71}$

$$
\begin{equation*}
=0.282 \tag{A1}
\end{equation*}
$$

Notes: Award (A2) for a correct final answer with no reasoning.
Award up to (M2) for correct reasoning or method.
52. (a) U

(b) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$65=30+50-n(A \cap B)$
$\Rightarrow n(A \cap B)=15$ (may be on the diagram)
$n\left(B \cap A^{\prime}\right)=50-15=35$
(A1) (C1)
53. (a)

(b) $\mathrm{P}(B)=0.4(0.6)+0.6(0.5)=0.24+0.30$

$$
\begin{equation*}
=0.54 \tag{M1}
\end{equation*}
$$

(c) $\mathrm{P}(C \mid B)=\frac{\mathrm{P}(B \cap C)}{\mathrm{P}(B)}=\frac{0.24}{0.54}=\frac{4}{9}(=0.444,3 \mathrm{sf})$
(A1) (C1)
(A1) (C2)
(A1) (C1)
54. (a)

	Males	Females	Totals
Unemployed	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$
Employed	$\mathbf{9 0}$	$\mathbf{5 0}$	$\mathbf{1 4 0}$
Totals	$\mathbf{1 1 0}$	$\mathbf{9 0}$	200

Note: Award (A1) if at least 4 entries are correct.
Award (A2) if all 8 entries are correct.
(b) (i) $\quad P($ unemployed female $)=\frac{40}{200}=\frac{1}{5}$
(ii) $\quad P($ male I employed person $)=\frac{90}{140}=\frac{9}{14}$
(A1)
55. (a)

	Boy	Girl	Total
TV	$\mathbf{1 3}$	$\mathbf{2 5}$	$\mathbf{3 8}$
Sport	33	29	$\mathbf{6 2}$
Total	46	$\mathbf{5 4}$	100

$$
\begin{equation*}
\mathrm{P}(\mathrm{TV})=\frac{38}{100} \tag{A1}
\end{equation*}
$$

(b) $\mathrm{P}(\mathrm{TV} \mid$ Boy $)=\frac{13}{46}(=0.283$ to 3 sf$)$

Notes: Award (A1) for numerator and (A1) for denominator. Accept equivalent answers.
56. (a)

Notes: Award (M1) for probabilities $\frac{1}{6}, \frac{5}{6}$ correctly entered on diagram.
Award (M1) for correctly listing the outcomes 6, 6; 6 not 6; not 6, 6; not 6, not 6, or the corresponding probabilities.
(b) $\mathrm{P}($ one or more sixes $)=\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6}$ or $\left(1-\frac{5}{6} \times \frac{5}{6}\right)$

$$
=\frac{11}{36}
$$

(A1) (C2)
57. (a)

(A1) (C1)
(b) (i) $n(A \cap B)=2$
(ii) $\mathrm{P}(A \cap B)=\frac{2}{36}\left(\right.$ or $\left.\frac{1}{18}\right)$ (allow ft from (b)(i))
(c) $n(A \cap B) \neq 0$ (or equivalent)
(R1) (C1)
[4]
58. $p($ Red $)=\frac{35}{40}=\frac{7}{8} \quad p($ Black $)=\frac{5}{40}=\frac{1}{8}$
(a) \quad (i) $\quad p$ (one black) $=\binom{8}{1}\left(\frac{1}{8}\right)^{1}\left(\frac{7}{8}\right)^{7}$

$$
=0.393 \text { to } 3 \mathrm{sf}
$$

(ii) $\quad p$ (at least one black) $=1-p($ none $)$

$$
\begin{align*}
& =1-\binom{8}{0}\left(\frac{1}{8}\right)^{0}\left(\frac{7}{8}\right)^{8} \tag{M1}\\
& =1-0.344 \tag{A1}\\
& =0.656
\end{align*}
$$

(A1) 3
(b) 400 draws: expected number of blacks $=\frac{400}{8}$

$$
\begin{equation*}
=50 \tag{M1}
\end{equation*}
$$

(A1) 2
[8]
59. (a) $p(A \cap B)=0.6+0.8-1$ $=0.4$
(A1) (C2)
(b) $\quad p(C A \cup C B)=p(C(A \cap B))=1-0.4$ $=0.6$
(A1) (C2)

[^0]: A1 N3

