IB Questionbank Mathematical Studies 3rd edition

Prob laws with tree dia MS

0 min 0 marks

1. (a)
$$P(A \cap B) = 0$$
 (A1) (C1)

(b) $P(A \cap B) = P(A) \times P(B)$ = $\frac{4}{13} \times \frac{5}{13}$ (M1)

Note: Award (M1) for product of two fractions, decimals or percentages.

$$P(A \cap B) = \frac{20}{169} \ (=0.118) \tag{A1}$$

(c)
$$\frac{7}{13} = \frac{4}{13} + \frac{5}{13} - P(A \cap B)$$
 (M1)(M1)
Notes: Award (M1) for $\frac{4}{13} + \frac{5}{13}$ seen, (M1) for subtraction of
 $\frac{7}{13}$ shown.
OR
Award (M1) for Venn diagram with 2 intersecting circles, (A1)
for correct probabilities in diagram.
 $P(A \cap B) = \frac{2}{3} (= 0.154)$

$$P(A \cap B) = \frac{2}{13} (= 0.154)$$
(A1) (C3)

[6]

2. (a) For solving for
$$P(A \cap B)$$
 from the formula in their tables (M1)
 $P(A \cap B) = 0.2$ (A1) (C2)

(b)	Because $0.4 \times 0.65 \neq 0.2$ need to see the numbers, not just a statement Therefore no, not independent	(R1) (A1)	(C2)
	Note: Cannot award (A1) if (R1) not awarded.		

(c)	Because $P(A \cap B) \neq 0$	(R1)	
	Not mutually exclusive	(A1)	(C2)

Note: Cannot award (A1) if (R1) not awarded.

[6]

3. (a)

Tomorrow

Note: Award (A1) for each correct pair.

(b) $0.4 \times 0.8 + 0.6 \times 0.7$

Today

(A1)(ft)(M1)

Notes: Award (A1)(ft) for two consistent products from tree diagram, (M1) for addition of their products. Follow through from their tree diagram provided all probabilities are between 0 and 1.

= 0.74 (A1)(ft) (C3)

[6]

4. (a)

Note: Award (A1) for each correct pair.

(b)
$$0.7 \times 0.88 = 0.616 \left(\frac{77}{125}, 61.6\%\right)$$
 (M1)(A1)(ft)(G2)

Note: Award (M1) for multiplying the correct probabilities.

(c)
$$0.3 \times 0.25 + 0.7 \times 0.88$$
 (M1)(M1)
Notes: Award (M1) for a relevant two-factor product, could be

Notes: Awara (M1) for a relevant two-factor product, could be $S \times NP \ OR \ L \times NP$. Award (M1) for summing 2 two-factor products.

$$P = 0.691 \left(\frac{691}{1000}, 69.1\% \right)$$
(A1)(ft)(G2)

Notes: (*ft*) from their answer to (*b*).

(d)
$$\frac{0.616}{0.691}$$
 (M1)(A1)

Note: Award (M1) for substituted conditional probability formula, (A1) for correct substitution.

$$P = 0.891 \left(\frac{616}{691}, 89.1\% \right)$$
(A1)(ft)(G2)

[11]

5. (a) 12 (A2) (C2)
(b)
$$\frac{3}{12} = \frac{1}{4}$$
 or 25% (A2) (C2)
(c) $\frac{2}{12} = \frac{1}{6}$ or 16.7% (3 s.f.) (A2) (C2)

(d)
$$\frac{4}{12} = \frac{1}{3}$$
 or 33.3% (3 s.f.) (A2) (C2)

[8]

6. (a)

(b) (i)
$$\frac{2}{5} \times \frac{3}{4} + \frac{3}{5} \times \frac{2}{4}$$
 (A1)(A1)

Note: Award (A1) for each correct product.

$$=\frac{12}{20} (=0.6) \tag{A1} (C3)$$

(ii)
$$\frac{\frac{2}{5} \times \frac{1}{4}}{\frac{3}{10} + \frac{1}{10}} = \frac{1}{4} = (0.25)$$
 (A1)(A1)(A1) (C3)

Note: Award (A1) for
$$\frac{2}{5} \times \frac{1}{4}$$
 seen and (A1) for $\frac{3}{10} + \frac{1}{10}$ seen.

[8]

Note: In the Spanish papers *B* is used instead of *G* and *P* is used instead of *W*.

(b)
$$P(G \cap W) = \frac{3}{4} \times \frac{17}{20}$$
 (A1)

$$P(NG \cap W) = \frac{1}{4} \times \frac{1}{5} \tag{A1}$$

$$P(W) = \frac{3}{4} \times \frac{17}{20} + \frac{1}{4} \times \frac{1}{5}$$
(M1)

$$= \frac{11}{16} (0.6875, 68.75\% \text{ or } 0.688 \text{ to } 3 \text{ s.f.})$$
(A1) (C4)

[8]