Prob laws with tree dia MS

0 min
0 marks

1. (a) $\mathrm{P}(A \cap B)=0$
(A1) (C1)
(b) $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$

$$
\begin{equation*}
=\frac{4}{13} \times \frac{5}{13} \tag{M1}
\end{equation*}
$$

Note: Award (M1) for product of two fractions, decimals or percentages.

$$
\begin{equation*}
\mathrm{P}(A \cap B)=\frac{20}{169}(=0.118) \tag{A1}
\end{equation*}
$$

(c) $\frac{7}{13}=\frac{4}{13}+\frac{5}{13}-\mathrm{P}(A \cap B)$

Notes: Award (M1) for $\frac{4}{13}+\frac{5}{13}$ seen, (M1) for subtraction of
$\frac{7}{13}$ shown.
OR
Award (M1) for Venn diagram with 2 intersecting circles, (A1)
for correct probabilities in diagram.
$\mathrm{P}(A \cap B)=\frac{2}{13}(=0.154)$
(A1) (C3)
2. (a) For solving for $\mathrm{P}(A \cap B)$ from the formula in their tables
$\mathrm{P}(A \cap B)=0.2$
(b) Because $0.4 \times 0.65 \neq 0.2$ need to see the numbers, not just a statement (R1) Therefore no, not independent

Note: Cannot award (Al) if (R1) not awarded.
(c) Because $\mathrm{P}(A \cap B) \neq 0$

Not mutually exclusive
(A1) (C2)
Note: Cannot award (Al) if (R1) not awarded.
3. (a)

$$
(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{A} 1) \quad(\mathrm{C} 3)
$$

Note: Award (A1) for each correct pair.
(b) $0.4 \times 0.8+0.6 \times 0.7$
(A1)(ft)(M1)
Notes: Award (A1)(ft) for two consistent products from tree diagram, (M1) for addition of their products. Follow through from their tree diagram provided all probabilities are between 0 and 1.
$=0.74$
(A1)(ft) (C3)
4. (a)

(A3)
Note: Award (A1) for each correct pair.
(b) $0.7 \times 0.88=0.616\left(\frac{77}{125}, 61.6 \%\right)$
(M1)(A1)(ft)(G2)

Note: Award (M1) for multiplying the correct probabilities.
(c) $0.3 \times 0.25+0.7 \times 0.88$

Notes: Award (M1) for a relevant two-factor product, could be $S \times N P$ OR $L \times N P$.
Award (M1) for summing 2 two-factor products.
$\mathrm{P}=0.691\left(\frac{691}{1000}, 69.1 \%\right)$
(A1)(ft)(G2)

Notes: (ft) from their answer to (b).
(d) $\frac{0.616}{0.691}$
(M1)(A1)
Note: Award (M1) for substituted conditional probability formula, (A1) for correct substitution.

$$
\begin{equation*}
\mathrm{P}=0.891\left(\frac{616}{691}, 89.1 \%\right) \tag{A1}
\end{equation*}
$$

5. (a) 12
(A2) (C2)
(b) $\frac{3}{12}=\frac{1}{4}$ or 25%
(A2) (C2)
(c) $\frac{2}{12}=\frac{1}{6}$ or 16.7% (3 s.f.)
(A2) (C2)
(d) $\frac{4}{12}=\frac{1}{3}$ or $33.3 \% ~(3$ s.f.)
(A2) (C2)
6. (a)

(A2) (C2)
(b) (i) $\frac{2}{5} \times \frac{3}{4}+\frac{3}{5} \times \frac{2}{4}$
(A1)(A1)
Note: Award (A1) for each correct product.
$=\frac{12}{20}(=0.6)$
(A1) (C3)
(ii) $\frac{\frac{2}{5} \times \frac{1}{4}}{\frac{3}{10}+\frac{1}{10}}=\frac{1}{4}=(0.25)$
(A1)(A1)(A1) (C3)

Note: Award (A1) for $\frac{2}{5} \times \frac{1}{4}$ seen and (A1) for $\frac{3}{10}+\frac{1}{10}$ seen.
7.

Note: In the Spanish papers B is used instead of G and P is used instead of W.
(a)

(A4) (C4)
(b) $\mathrm{P}(G \cap W)=\frac{3}{4} \times \frac{17}{20}$
$\mathrm{P}(N G \cap W)=\frac{1}{4} \times \frac{1}{5}$
$\mathrm{P}(W)=\frac{3}{4} \times \frac{17}{20}+\frac{1}{4} \times \frac{1}{5}$
$=\frac{11}{16}(0.6875,68.75 \%$ or 0.688 to 3 s.f. $)$

