IB Questionbank Maths SL

prob sl ans

6 min
6 marks

1. (a) correct substitution into formula for $\mathrm{E}(X)$
e.g. 0.05×240
$\mathrm{E}(X)=12$
A1 N2
2
(b) evidence of recognizing binomial probability (may be seen in part (a))
(M1)
e.g. $\binom{240}{15}(0.05)^{15}(0.95)^{225}, X \sim \mathrm{~B}(240,0.05)$
$\mathrm{P}(X=15)=0.0733$
A1 N2 2
(c) $\mathrm{P}(X \leq 9)=0.236$
(A1) (M1)
e.g. using complement, summing probabilities
$\mathrm{P}(X \geq 10)=0.764$
A1 N3 3
[7]
2. (a) symmetry of normal curve
e.g. $\mathrm{P}(X<25)=0.5$
$\mathrm{P}(X>27)=0.2$
(M1)

A1 N2 2

(b) METHOD 1

finding standardized value
(A1)
e.g. $\frac{27-25}{\sigma}$
evidence of complement
e.g. $1-p, \mathrm{P}(X<27), 0.8$
finding z-score
e.g. $z=0.84 \ldots$
attempt to set up equation involving the standardized value
e.g. $0.84=\frac{27-25}{\sigma}, 0.84=\frac{X-\mu}{\sigma}$
$\sigma=2.38$

METHOD 2
set up using normal CDF function and probability
e.g. $\mathrm{P}(25<X<27)=0.3, \mathrm{P}(X<27)=0.8$
correct equation
e.g. $\mathrm{P}(25<X<27)=0.3, \mathrm{P}(X>27)=0.2$
attempt to solve the equation using GDC
e.g. solver, graph, trial and error (more than two trials must be shown)
$\sigma=2.38$
A1 N3 5
e.g. probability $=\binom{7}{4}(0.9)^{4}(0.1)^{3}, X \sim \mathrm{~B}(7,0.9)$, complementary
probabilities
probability $=0.0230$
(b) correct expression

A1A1 N2
e.g. $\binom{7}{4} p^{4}(1-p)^{3}, 35 p^{4}(1-p)^{3}$

Note: Award Al for binomial coefficient $\left(\operatorname{accept}\binom{7}{3}\right)$, Al for $p^{4}(1-p)^{3}$.
(c) evidence of attempting to solve their equation
(M1)
e.g. $\binom{7}{4} p^{4}(1-p)^{3}=0.15$, sketch
$p=0.356,0.770 \quad$ A1A1 N3
4. (a) evidence of appropriate approach
e.g. $1-0.85$, diagram showing values in a normal curve $\mathrm{P}(w \geq 82)=0.15$

$$
\text { A1 } \mathrm{N} 2
$$

(b) (i) $z=-1.64$

A1 N1
(ii) evidence of appropriate approach
e.g. $-1.64=\frac{x-\mu}{\sigma}, \frac{68-76.6}{\sigma}$
correct substitution
A1
e.g. $-1.64=\frac{68-76.6}{\sigma}$

$$
\sigma=5.23
$$

(c) \quad (i) $\quad 68.8 \leq$ weight ≤ 84.4

A1A1A1 N3
Note: Award A1 for 68.8, A1 for 84.4, A1 for giving answer as an interval.
(ii) evidence of appropriate approach
e.g. $\mathrm{P}(-1.5 \leq z \leq 1.5), \mathrm{P}(68.76<y<84.44)$
$\mathrm{P}($ qualify $)=0.866$
A1 N2
(d) recognizing conditional probability
e.g. $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$\mathrm{P}($ woman and qualify $)=0.25 \times 0.7$
$\mathrm{P}($ woman \mid qualify $)=\frac{0.25 \times 0.7}{0.866}$
$\mathrm{P}($ woman \mid qualify $)=0.202$

A1
A1 N3
5. (a) $\sigma=3$
evidence of attempt to find $\mathrm{P}(X \leq 24.5)$
e.g. $z=1.5, \frac{24.5-20}{3}$
$\mathrm{P}(X \leq 24.5)=0.933$
A1 N3
(b) (i)

A1A1 N2
Note: Award A1 with shading that clearly extends to right of the mean, Al for any correct label, either k, area or their value of k
(ii) $z=1.03(64338)$ attempt to set up an equation

$$
k=23.1
$$

6. (a) evidence of attempt to find $\mathrm{P}(X \leq 475)$
e.g. $\mathrm{P}(Z \leq 1.25)$
$\mathrm{P}(X \leq 475)=0.894$
(b) evidence of using the complement
e.g. $0.73,1-p$
$z=0.6128$
(A1)
setting up equation
(M1)
e.g. $\frac{a-450}{20}=0.6128$
$a=462$
7. $\quad X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
$\mathrm{P}(X>90)=0.15$ and $\mathrm{P}(X<40)=0.12$
Finding standardized values $1.036,-1.175$
(M1)
A1A1 (M1)

A1A1 N2N2
8. (a) evidence of using mid-interval values (5, 15, 25, 35, 50, $67.5,87.5$) $\sigma=19.8$ (cm)
(b) (i) $Q_{1}=15, Q_{3}=40$
$I Q R=25$ (accept any notation that suggests the interval 15 to 40)
(A1)(A1)
A1 N3
(ii) METHOD 1
60% have a length less than k
$0.6 \times 200=120$
$k 30(\mathrm{~cm})$
(A1)
(A1) A1 N 2

METHOD 2

$$
\begin{aligned}
& 0.4 \times 200=80 \\
& 200-80=120 \\
& k=30(\mathrm{~cm})
\end{aligned}
$$

(c) $\quad l<20 \mathrm{~cm} \Rightarrow 70$ fish

$$
\begin{equation*}
P(\text { small })=\frac{70}{200}(=0.35) \tag{M1}
\end{equation*}
$$

A1 N2
(e) correct substitution (of their p values) into formula for $\mathrm{E}(X)$ e.g. $4 \times 0.35+10 \times 0.565+12 \times 0.085$
$\mathrm{E}(X)=8.07$ (accept \$8.07)
(d)

Cost $\$ X$	4	10	12
$\mathrm{P}(X=x)$	$\mathbf{0 . 3 5}$	0.565	$\mathbf{0 . 0 8 5}$

A1A1 N2
(A1)

A1 N2
9. $\quad X \sim \mathrm{~N}\left(7,0.5^{2}\right)$
(a) (i) $z=2$
$\mathrm{P}(X<8)=\mathrm{P}(Z<2)=0.977$
A1 N2
(ii) evidence of appropriate approach
e.g. symmetry, $z=-2$
$\mathrm{P}(6<X<8)=0.954$ (tables 0.955)
A1 N 2
Note: Award M1A1(AP) if candidates refer to 2 standard deviations from the mean, leading to 0.95 .
(b) (i)

A1A1 N2
Note: Award Al for d to the left of the mean, Al for area to the left of d shaded.
(ii) $z=-1.645$

$$
\begin{gathered}
\frac{d-7}{0.5}=-1.645 \\
d=6.18
\end{gathered}
$$

(c) $\quad Y \sim \mathrm{~N}\left(\mu, 0.5^{2}\right)$
$\mathrm{P}(Y<5)=0.2$
$z=-0.84162 \ldots$
$\frac{5-\mu}{0.5}=-0.8416$
$\mu=5.42$
A1 N3
10. (a)

A1A1 N 2
Notes: Award Al for three re.g.ions, (may be shown by lines or shading) Al for clear labelling of two re.g.ions (may be shown by percentages or cate.g.ories).
r and t need not be labelled, but if they are, they may be interchanged.
(b) METHOD 1

$$
\begin{aligned}
& \mathrm{P}(X<r)=0.1292 \\
& \quad r=6.56 \\
& 1-0.1038(=0.8962) \text { (may be seen later) } \\
& \mathrm{P}(X<t)=0.8962 \\
& \quad t=7.16
\end{aligned}
$$

(A1)
A1 N2

METHOD 2

finding z-values $-1.130 \ldots, 1.260 \ldots$
evidence of setting up one standardized equation
e.g. $\frac{r-6.84}{0.25}=-1.13 \mathrm{~K}, t=1.260 \times 0.25+6.84$
$r=6.56, t=7.16$
A1A1 N2N2
11. (a) $\mathrm{E}(X)=2$
(b) evidence of appropriate approach involving binomial

A1 N1
(M1)
e.g. $\binom{10}{3}(0.2)^{3},(0.2)^{3}(0.8)^{7}, X \sim B(10,0.2)$
$\mathrm{P}(X=3)=0.201$
(c) METHOD 1
$\mathrm{P}(X \leq 3)=0.10737+0.26844+0.30199+0.20133(=0.87912 \ldots)$
evidence of using the complement (seen anywhere)
e.g. 1 - any probability, $\mathrm{P}(X>3)=1-\mathrm{P}(X \leq 3)$
$\mathrm{P}(X>3)=0.121$

METHOD 2

recognizing that $\mathrm{P}(X>3)=\mathrm{P}(X \geq 4)$
(M1)
e.g. summing probabilities from $X=4$ to $X=10$
correct expression or values
(A1)
e.g. $\sum_{r=4}^{10}\binom{10}{r}(0.2)^{10-r}(0.8)^{r}$
$0.08808+0.02642+0.005505+0.000786+0.0000737+0.000004+0.0000001$
$\mathrm{P}(X>3)=0.121$
A1 N2
12. The speeds of cars at a certain point on a straight road are normally distributed with mean μ and standard deviation $\sigma .15 \%$ of the cars travelled at speeds greater than $90 \mathrm{~km} \mathrm{~h}^{-1}$ and 12% of them at speeds less than $40 \mathrm{~km} \mathrm{~h}^{-1}$. Find μ and σ.

