IB Questionbank Maths SL

prob sl ans

6 min 6 marks

1.	(a)	correct substitution into formula for $E(X)$	(A1)		
		<i>e.g.</i> 0.05× 240			
		E(X) = 12	A1	N2	2
	(b)	evidence of recognizing binomial probability (may be seen in part (a))	(M1)		
		<i>e.g.</i> $\binom{240}{15} (0.05)^{15} (0.95)^{225}, X \sim B(240, 0.05)$			
		P(X=15) = 0.0733	A1	N2	2
	(c)	$P(X \le 9) = 0.236$	(A1)		
		evidence of valid approach	(M1)		
		e.g. using complement, summing probabilities			
		$P(X \ge 10) = 0.764$	A1	N3	3
2.	(a)	symmetry of normal curve	(M1)		
		<i>e.g.</i> $P(X < 25) = 0.5$			

P(X > 27) = 0.2 A1 N2 2

[7]

(b) METHOD 1

finding standardized value

$$e.g. \ \frac{27-25}{\sigma}$$

evidence of complement (M1)

e.g. 1-p, P(X < 27), 0.8

finding z-score (A1)

$$e.g. \ z = 0.84...$$

attempt to set up equation involving the standardized value

e.g.
$$0.84 = \frac{27 - 25}{\sigma}, 0.84 = \frac{X - \mu}{\sigma}$$

 $\sigma = 2.38$ A1 N3 5

(A1)

M1

[7]

METHOD 2

set up using normal CDF function and probability	(M1)			
<i>e.g.</i> $P(25 < X < 27) = 0.3$, $P(X < 27) = 0.8$				
correct equation	A2			
<i>e.g.</i> $P(25 < X < 27) = 0.3$, $P(X > 27) = 0.2$				
attempt to solve the equation using GDC	(M1)			
e.g. solver, graph, trial and error (more than two trials must be shown)				
$\sigma = 2.38$	A1	N3	5	

3. (a) evidence of recognizing binomial probability (may be seen in (b) or (c)) (M1) *e.g.* probability = $\begin{pmatrix} 7 \\ 4 \end{pmatrix}$ (0.9)⁴(0.1)³, X ~ B(7, 0.9), complementary probabilities

(b) correct expression A1A1 N2 $e.g. \begin{pmatrix} 7\\ 4 \end{pmatrix} p^4 (1-p)^3, 35p^4 (1-p)^3$

Note: Award A1 for binomial coefficient
$$\left(\operatorname{accept}\begin{pmatrix} 7\\ 3 \end{pmatrix}\right)$$
,
A1 for $p^4(1-p)^3$.

(c)	evidence of attempting to solve their equation	(M1)		
	<i>e.g.</i> $\binom{7}{4} p^4 (1-p)^3 = 0.15$, sketch			
	p = 0.356, 0.770	A1A1	N3	
				[7]

4. (a)evidence of appropriate approach
e.g. 1 - 0.85, diagram showing values in a normal curve
 $P(w \ge 82) = 0.15$ (M1)A1N2

(b) (i)
$$z = -1.64$$
 A1 N1

(ii) evidence of appropriate approach (M1) $e.g. -1.64 = \frac{x - \mu}{\sigma}, \frac{68 - 76.6}{\sigma}$

correct substitution

$$e.g. -1.64 = \frac{68 - 76.6}{\sigma}$$

 $\sigma = 5.23$ A1 N1

A1

(c) (i)
$$68.8 \le \text{weight} \le 84.4$$
 A1A1A1 N3
Note: Award A1 for 68.8, A1 for 84.4, A1 for giving answer as
an interval.

(ii)	evidence of appropriate approach	(M1)	
	<i>e.g.</i> P(−1.5 ≤ <i>z</i> ≤1.5), P(68.76 < <i>y</i> < 84.44)		
	P(qualify) = 0.866	A1	N2

(d) recognizing conditional probability(M1) $e.g. P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ (M1)P(woman and qualify) = 0.25×0.7 (A1)P(woman \mid qualify) = $\frac{0.25 \times 0.7}{0.866}$ A1P(woman \mid qualify) = 0.202A1N3[15]

5.	(a)	$\sigma = 3$			(A1)

evidence of attempt to find $P(X \le 24.5)$ (M1)

e.g.
$$z = 1.5, \frac{24.5 - 20}{3}$$

P($X \le 24.5$) = 0.933 A1 N3 3

(b) (i)

Note: Award A1 with shading that clearly extends to right of the mean, A1 for any correct label, either k, area or their value of k

(ii)	z = 1.03(64338)	(A1)			
	attempt to set up an equation	(M1)			
	<i>e.g.</i> $\frac{k-20}{3} = 1.0364, \frac{k-20}{3} = 0.85$				
	<i>k</i> = 23.1	A1	N3	5	
					[8]

6.	(a)	evidence of attempt to find $P(X \le 475)$ <i>e.g.</i> $P(Z \le 1.25)$ $P(X \le 475) = 0.894$	(M1) A1	N2	
	(b)	evidence of using the complement <i>e.g.</i> 0.73 , $1 - p$	(M1)		
		z = 0.6128 setting up equation <i>e.g.</i> $\frac{a - 450}{20} = 0.6128$	(A1) (M1)		
		<i>a</i> = 462	A1	N3	[6]

7.	P(X Find	ing sta	= 0.15 and ndardized	P(X < 40) = values 1.036	5, -1.175			(M1) A1A1		
	Setting up the equations $1.036 = \frac{90 - \mu}{\sigma}, -1.175 = \frac{40 - \mu}{\sigma}$						(M1)			
			= 22.6		σ	σ		A1A1N	J2N2	[6]
8.	(a)		ence of usi 9.8 (cm)	ing mid-inter	val values (5	, 15, 25, 35,	50, 67.5, 87.5)	(M1) A2	N3	
	(b)	(i)	$Q_1 = 15$ $IQR = 2$		y notation the	at suggests t	he interval 15 to 40)	(A1)(A1) A1	N3	
		(ii)	METH	OD 1						
				tive a length length $l_0 = 120$	ess than k			(A1) (A1) A1	N2	
			METH	OD 2						
			0.4×20 200 - 80 k = 30 (6)	0 = 120				(A1) (A1) A1	N2	
	(c)		$0 \text{ cm} \Rightarrow $					(M1)		
		P(sm	$(all) = \frac{70}{200}$	$\frac{0}{0}$ (= 0.35)				A1	N2	
	(d)					I	1			
			ost \$X	4	10	12				
		P	(X = x)	0.35	0.565	0.085			170	
								A1A1	N2	

(e) correct substitution (of their *p* values) into formula for E(X)*e.g.* $4 \times 0.35 + 10 \times 0.565 + 12 \times 0.085$ E(X) = 8.07 (accept \$8.07)

N2 [15]

(A1)

A1

9. $X \sim N (7, 0.5^2)$

(a) (i)
$$z = 2$$
 (M1)
 $P(X < 8) = P(Z < 2) = 0.977$ A1 N2

(ii)evidence of appropriate approach
$$e.g.$$
 symmetry, $z = -2$
 $P(6 < X < 8) = 0.954$ (tables 0.955)(M1)A1N2

Note: Award M1A1(AP) if candidates refer to 2 standard deviations from the mean, leading to 0.95.

(b) (i)

(ii)

		A1A1	N2
Note:	Award A1 for d to the left of the mean, A1 for area to the left of d shaded.		
<i>z</i> = – 1.645		(A1)	
d-7			

$$\frac{u-r}{0.5} = -1.645 \tag{M1}$$

$$d = 6.18$$
 A1 N3

(c)
$$Y \sim N(\mu, 0.5^2)$$

 $P(Y < 5) = 0.2$ (M1)
 $z = -0.84162...$ A1
 $\frac{5-\mu}{0.5} = -0.8416$ (M1)

$$\mu = 5.42$$
 A1 N3

[13]

10. (a)

A1A1 N2

(M1)

Notes: Award A1 for three re.g.ions, (may be shown by lines or shading) A1 for clear labelling of two re.g.ions (may be shown by percentages or cate.g.ories). r and t need not be labelled, but if they are, they may be interchanged.

(b) METHOD 1

P(X < r) = 0.1292	(A1)	
r = 6.56	A1	N2
1 - 0.1038 (= 0.8962) (may be seen later) P(X < t) = 0.8962	A1 (A1)	
t = 7.16	A1	N2

METHOD 2

finding <i>z</i> -values –1.130, 1.260	A1A1
--	------

evidence of setting up one standardized equation r = 6.84

e.g.
$$\frac{r-6.84}{0.25} = -1.13$$
K, $t = 1.260 \times 0.25 + 6.84$
 $r = 6.56, t = 7.16$ A1A1 N2N2

[7]

11. (a) E(X) = 2 A1 N1

(b)	evidence of appropriate approach involving binomial	(M1)	
	<i>e.g.</i> $\binom{10}{3}(0.2)^3$, $(0.2)^3(0.8)^7$, $X \sim B(10, 0.2)$		
	P(X = 3) = 0.201	A1	N2

(c) METHOD 1

 $P(X \le 3) = 0.10737 + 0.26844 + 0.30199 + 0.20133 (= 0.87912...)$ (A1)evidence of using the complement (seen anywhere)(M1)e.g. 1 - any probability, $P(X > 3) = 1 - P(X \le 3)$ A1P(X > 3) = 0.121A1

METHOD 2

recognizing that $P(X > 3) = P(X \ge 4)$ <i>e.g.</i> summing probabilities from $X = 4$ to $X = 10$	(M1)		
correct expression or values	(A1)		
<i>e.g.</i> $\sum_{r=4}^{10} {10 \choose r} (0.2)^{10-r} (0.8)^r$			
0.08808 + 0.02642 + 0.005505 + 0.000786 + 0.0000737 + 0.000004 + 0.000004	00001		
P(X > 3) = 0.121	A1	N2	
			[6]

12. The speeds of cars at a certain point on a straight road are normally distributed with mean μ and standard deviation σ . 15 % of the cars travelled at speeds greater than 90 km h⁻¹ and 12 % of them at speeds less than 40 km h⁻¹. Find μ and σ .

(Total 6 marks)