Perms and Coms 2

1)

(i) 40320
(ii) $\frac{8 \times 7 \times 6 \times 5 \times 4}{5 \times 4 \times 3 \times 2(\times 1)}$ or $\frac{8!}{5!\times 3!}$

56
(iii) uses 5, 4 and 3 only
2)
(i) $\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2(\times 1)}$ 126
(ii) $\frac{4 \times 3}{2(\times 1)}$

$$
\left(\frac{4 \times 3}{2(\times 1)}\right) \times 3 \times 2
$$

$$
36
$$

(iii) adds number of arrangements of 2,1,1 and 1,2,1 and 1,1,2 only multiplies for each selection
$(36)+4 \times 3 \times 2+4 \times 3(\times 1)$
3) $\quad 2 \quad$ (i) ${ }^{10} C_{5}=252$
(ii) 4 women, 1 man: 6

$$
3 \text { women, } 2 \text { men: }{ }^{4} C_{3} \times{ }^{6} C_{2}
$$

$$
=60
$$

Total $=66$

B1		
	$[1]$	
M1		M1 for a plan
B1		B1 for 6
B1		B1 for 60
A1		A1 for total
	$[4]$	Allow marks for other valid methods

[4] Allow marks for other valid methods

Perms and Coms 2

6)

2	9 CDs $\rightarrow 4$ Beatles, 3 Abba, 2 Rolling		
(i)	${ }_{8} \mathrm{C}_{3}=(8 \times 7 \times 6) \div(3 \times 2 \times 1)=56$	M1 A1 [2]	2 if correct without working ${ }_{9} \mathrm{C}_{3} \mathrm{MO} .4 \times{ }_{8} \mathrm{C}_{3}$ gets M1 A0
(ii)	$2 \mathrm{~B} \mathrm{2A} \quad{ }_{4} \mathrm{C}_{2} \times 3 \mathrm{C}_{2}=18$		
	2B 2R $\quad{ }_{4} \mathrm{C}_{2} \times 1=6$	M1	One correct product with ${ }_{n} \mathrm{C}_{\mathrm{r}} \mathrm{s}$
	$2 \mathrm{~A} 2 \mathrm{R} \quad{ }_{3} \mathrm{C}_{2} \times 1=3$	M1	3 products added - even if ${ }_{n} \mathrm{P}_{\mathrm{r}}$
	\rightarrow Total of 27	A1 [3]	CAO

7)

7 (i)	$6!=720$	B1	
(ii)	$M \ldots \Rightarrow 5!=120$	M1	A1
(iii)	$4!48$	M1	A1
(iv)	$6!/ 4!2!=15 \quad$ Accept ${ }_{6} \mathrm{C}_{4}$ or ${ }_{6} \mathrm{C}_{2}=15$	B1	
(v) [8]	$5!/ 3!2!=10 \quad$ (or, answer to (iv) less ways M can be omitted) (Listing - ignoring repeats $\geqslant 8[\mathrm{M} 1] \Rightarrow 10$ [A1])	M1	A1

