

Dulwich College Shanghai

NAME				
FORM	_ TEACHER			

YEAR 12 END OF YEAR EXAM 2013 MATHEMATICS STANDARD LEVEL PAPER 2: NON-CALCULATOR

Instructions to candidates:

- o Answer all questions.
- O You may **not** use a calculator.
- o Write in blue or black ink. Do not use correction fluid.
- o Diagrams and sketches should be drawn in pencil.
- o Unless otherwise stated in the question, give answers exactly or to 3 significant figures.
- o Answers to Section A should be written on the test paper and Section B on file paper.
- o The number of marks allocated to each question is indicated by [].
- The total number of marks is 60.

	%
60	

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all questions in the boxes provided.

1.	[Ma	ximum mark: 6]	
	In a	arithmetic sequence, $u_1 = 2$ and $u_3 = 8$.	
	(a)	Find d.	[2 marks]
	(b)	Find u_{20} .	[2 marks]
	(c)	Find S_{20} .	[2 marks]

2.	[Maximum mark: 5]	
	Let $f(x) = 7 - 2x$ and $g(x) = x + 3$.	
	(a) Find $(g \circ f)(x)$.	[2 marks]
	(b) Write down $g^{-1}(x)$.	[1 mark]
	(c) Find $(f \circ g^{-1})(5)$.	[2 marks]

5.	[Maximum mark: 6]	
	Let $f(x) = \frac{1}{4}x^2 + 2$. The line L is the tangent to the curve of f at (4, 6).	
	Find the equation of L .	[4 marks]

6.	$[\Lambda$	1ax	ımuı	n mar	k: 8]			
	т.,		0	2	1	π	. 0	

Let	$\sin \theta = \frac{2}{\sqrt{13}}$, where $\frac{\kappa}{2} < \theta < \pi$.	
(a)	Find $\cos \theta$.	[3 marks]
(b)	Find $\tan 2\theta$.	[5 marks]

7.	[Maximum mark: 7]	
	Consider $f(x) = 2kx^2 - 4kx + 1$, for $k \ne 0$. The equation $f(x) = 0$ has two equal roots.	
	(a) Find the value of k .	[5 marks]
	(b) The line $y = p$ intersects the graph of f . Find all possible values of p .	[2 marks]

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

Do **NOT** write solutions on this page.

6. [Maximum mark: 16]

Let $f(x) = \frac{x}{-2x^2 + 5x - 2}$ for $-2 \le x \le 4$, $x \ne \frac{1}{2}$, $x \ne 2$. The graph of f is given below.

The graph of f has a local minimum at A(1, 1) and a local maximum at B.

- (a) Use the quotient rule to show that $f'(x) = \frac{2x^2 2}{(-2x^2 + 5x 2)^2}$. [6 marks]
- (b) Hence find the coordinates of B. [7 marks]
- (c) Given that the line y = k does not meet the graph of f, find the possible values of k. [3 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

7. [Maximum mark: 14]

The following diagram represents a large Ferris wheel, with a diameter of 100 metres.

Let P be a point on the wheel. The wheel starts with P at the lowest point, at ground level. The wheel rotates at a constant rate, in an anticlockwise (counterclockwise) direction. One revolution takes 20 minutes.

- (a) Write down the height of P above ground level after
 - (i) 10 minutes;

(ii) 15 minutes. [2 marks]

Let h(t) metres be the height of P above ground level after t minutes. Some values of h(t) are given in the table below.

t	h(t)
0	0.0
1	2.4
2	9.5
3	20.6
4	34.5
5	50.0
	20.0

- (b) (i) Show that h(8) = 90.5.
 - (ii) Find h(21).

[4 marks]

(c) **Sketch** the graph of h, for $0 \le t \le 40$.

[3 marks]

(d) Given that h can be expressed in the form $h(t) = a \cos bt + c$, find a, b and c.

[5 marks]