Normal Distribution Answers

1)

$X \sim \mathrm{~N}\left(7,0.5^{2}\right)$
(a) (i) $z=2$
(M1)
$\mathrm{P}(X<8)=\mathrm{P}(Z<2)=0.977$
(ii) evidence of appropriate approach
(M1)
e.g. symmetry, $z=-2$
$\mathrm{P}(6<X<8)=0.954$ (tables 0.955) A1

Note: Award $\operatorname{M1A1(AP)}$ if candidates refer to 2 standard deviations from the mean, leading to 0.95 .
(b) (i)

A1A1

Note: \quad Award $\boldsymbol{A 1}$ for d to the left of the mean, $\boldsymbol{A 1}$ for area to the left of d shaded.
(ii) $z=-1.645$

$$
\frac{d-7}{0.5}=-1.645
$$

$$
d=6.18 \quad A 1
$$

2)

(a)

Notes: Award $\boldsymbol{A 1}$ for three regions, (may be shown by lines or shading)
$\boldsymbol{A 1}$ for clear labelling of two regions (may be shown by percentages or categories). r and t need not be labelled, but if they are, they may be interchanged.

(b) METHOD 1

$\mathrm{P}(X<r)=0.1292$	(A1)	
$r=6.56$	A1	N2
1-0.1038 (=0.8962) (may be seen later)	A1	
$\mathrm{P}(X<t)=0.8962$	(A1)	
$t=7.16$	A1	N2

METHOD 2

finding z-values $-1.130 \ldots, 1.260 \ldots$
evidence of setting up one standardised equation
e.g. $\frac{r-6.84}{0.25}=-1.13 \ldots, \quad t=1.260 \times 0.25+6.84$
$r=6.56, t=7.16$
A1A1

Normal Distribution Answers

3)

(a) evidence of attempt to find $\mathrm{P}(X \leq 475)$
e.g. $\mathrm{P}(Z \leq 1.25)$
$\mathrm{P}(X \leq 475)=0.894$
A1
(b) evidence of using the complement
e.g. $0.73,1-p$
$z=0.6128$
(A1)
setting up equation
e.g. $\frac{a-450}{20}=0.6128$
$a=462 \quad$ A1
4)
(a)

Note: Award $\boldsymbol{A 1}$ for vertical line to right of mean, $\boldsymbol{A 1}$ for shading to right of their vertical line.
(b) evidence of recognizing symmetry
e.g. 105 is one standard deviation above the mean so d is one standard deviation below the mean, shading the corresponding part, $105-100=100-d$
$d=95$
(c) evidence of using complement
e.g. $1-0.32,1-p$
$\mathrm{P}(d<X<105)=0.68$

A1
N2
A1A1 N2
(M1)

A1
[6 marks]

Normal Distribution Answers

5)

(a) $\sigma=3$
evidence of attempt to find $\mathrm{P}(X \leq 24.5)$
e.g. $z=1.5, \frac{24.5-20}{3}$
$\mathrm{P}(X \leq 24.5)=0.933$
(b) (i)

A1A1
Note: Award A1 with shading that clearly extends to right of the mean, AI for any correct label, either k, area or their value of k.
(ii) $z=1.03$ (64338)
attempt to set up an equation
e.g. $\frac{k-20}{3}=1.0364, \frac{k-20}{3}=0.85$

$$
k=23.1
$$

Normal Distribution Answers

6)

(a) symmetry of normal curve
e.g. $\mathrm{P}(X<25)=0.5$
$\mathrm{P}(X>27)=0.2 \quad$ A1
N2
(b) METHOD 1
finding standardized value
e.g. $\frac{27-25}{\sigma}$
evidence of complement
e.g. $1-p, \mathrm{P}(X<27), 0.8$
finding z-score
e.g. $z=0.84 \ldots$
attempt to set up equation involving the standardized value
e.g. $0.84=\frac{27-25}{\sigma}, 0.84=\frac{X-\mu}{\sigma}$
$\sigma=2.38$
A1
N3

METHOD 2

set up using normal CDF function and probability
e.g. $\mathrm{P}(25<X<27)=0.3, \mathrm{P}(X<27)=0.8$
correct equation A2
e.g. $\mathrm{P}(25<X<27)=0.3, \mathrm{P}(X>27)=0.2$
attempt to solve the equation using GDC
e.g. solver, graph, trial and error (more than two trials must be shown)
$\sigma=2.38$
N3

