1)

Using a straight edge and compasses only, draw the locus of all points inside the quadrilateral $A B C D$ which are equidistant from the lines $A C$ and $B D$.

Show clearly all your construction arcs.

2)

The boundary of a park is in the shape of a triangle $A B C$. $A B=240 \mathrm{~m}, B C=180 \mathrm{~m}$ and $C A=140 \mathrm{~m}$.

In part (a), show clearly all your construction arcs.
(a) (i) Using a scale of 1 centimetre to represent 20 metres, construct an accurate scale drawing of triangle $A B C$. The line $A B$ has already been drawn for you.

A
(ii) Using a straight edge and compasses only, construct the bisector of angle $A C B$.

Label the point D, where this bisector meets $A B$.
(iii) Using a straight edge and compasses only, construct the locus of points, inside the triangle, which are equidistant from A and from D.
(iv) Flowers are planted in the park so that they are nearer to $A C$ than to $B C$ and nearer to D than to A.

Shade the region inside your triangle which shows where the flowers are planted.
3)

The diagram shows a farmer's field $A B C$.
The farmer decides to grow potatoes in the region of the field which is

- nearer to A than to C
and
- nearer to $A B$ than to $A C$.

Using a straight edge and compasses only, construct two loci accurately and shade this region on the diagram.
4)

(a) On the diagram above, using a straight edge and compasses only, construct
(i) the bisector of angle $A B C$,
(ii) the locus of points which are equidistant from A and from B.
(b) Shade the region inside the triangle which is nearer to A than to B and nearer to $A B$ than to $B C$.
5)

(a) Draw accurately the locus of points, inside the quadrilateral $A B C D$, which are 6 cm from the point D.
(b) Using a straight edge and compasses only, construct
(i) the perpendicular bisector of $A B$,
(ii) the locus of points, inside the quadrilateral, which are equidistant from $A B$ and from $B C$. [2]
(c) The point Q is equidistant from A and from B and equidistant from $A B$ and from $B C$.
(i) Label the point Q on the diagram.
(ii) Measure the distance of Q from the line $A B$.
(d) On the diagram, shade the region inside the quadrilateral which is

- less than 6 cm from D
and
- \quad nearer to A than to B and
- nearer to $A B$ than to $B C$.

6)

The diagram is a scale drawing of a park $E F G H$. The scale is $1: 10000$.
A statue is to be placed in the park so that it is

- nearer to G than to H
- nearer to $H G$ than to $F G$
- more than 550 metres from F.

Construct accurately the boundaries of the region R in which the statue can be placed.
Leave in all your construction arcs and shade the region R.
$A B C D$ is a rectangle with $A B=10 \mathrm{~cm}$ and $B C=6 \mathrm{~cm} . M N$ is the perpendicular bisector of $B C$. $A P$ is the bisector of angle $B A D$.
O is the midpoint of $A B$ and also the centre of the semicircle, radius 5 cm .

Write the letter R in the region which satisfies all three of the following conditions.

- nearer to $A B$ than to $A D$
- nearer to C than to B
- less than 5 cm from O

8)

$A B$ is the diameter of a circle.
C is a point on $A B$ such that $A C=4 \mathrm{~cm}$.
(a) Using a straight edge and compasses only, construct
(i) the locus of points which are equidistant from A and from B,
(ii) the locus of points which are 4 cm from C.
(b) Shade the region in the diagram which is

- less than 4 cm from C.

