Module 2 Circle Theorems Answers

1)

(a) 40
(b) 65
$\left|\begin{array}{l}1 \\ 1\end{array}\right|$
2)
(a) 52
(b) 64
(c) 71
1
2 M1 angle CED $=19$
3)

(b) (i)	$\begin{array}{l}96 \\ \text { (ii) }\end{array}$
48 ft	
(iii)	97 ft
(iv)	35

(c)
$20 n=360$ oe or $\frac{180(n-2)}{n}=160$ oe or $180(n-2)=8 \times 360$ oe or $8\left(\frac{360}{n}\right)=180-\frac{360}{n}$
18 www 3
ft 0.5 their (b)(i)
ft 145 - their (b)(ii)

M1 for $9 e=180$ oe allow diagram to show this if reasonably clear
or M1 for 8×360 or $\frac{8 \times 360}{n}$

1 ft
1 ft
1

M2
A1
4)
(b) (i) 29
(ii) 61 ft
(iii) 61 ft
(iv) 119 ft
(c) (i) 20
(ii) 110
5)
(a) (Angles in) same segment
(b) (i) 100
(ii) 43
(iii) 3

Allow (angles on) the same arc

B1 $O B C$ or $O C B=\frac{1}{2}(180-86)(=47)$

Module 2 Circle Theorems Answers

6)

(a) 66°	$\mathbf{2}$	M1 for 90° clearly identified as A
(b) 33°	$\mathbf{1}$	
(c) 123°	$\mathbf{2}$	B1 for $O B A$ or $O A B=57^{\circ}$

7
(a) 72
(b) 36
(c) 54
1
1
2ft
ft $90-$ (b) \quad M1 $P O Q=108$
8)

(a)	35
(b)	55
(c)	55
(d)	125

$\mathbf{1}$	
$\mathbf{1 f t}$	$90-\mathbf{(a)} \quad$ but $b>0$
$\mathbf{1 f t}$	$=\mathbf{(b)}$
$\mathbf{1 f t}$	$180-\mathbf{(c)}$

