

389

D

Ċ

AB is the diameter of a circle, centre O. C, D and E lie on the circle. EC is parallel to AB and perpendicular to OD. Angle DOC is 38°.

В

Work out

(a) angle BOC,

Answer(a) Angle
$$BOC = [1]$$

[1]

[1]

(b) angle CBO,

Answer(b) Angle
$$CBO = [1]$$

(c) angle *EDO*.

2)

Answer(c)

[3]

R, *H*, *S*, *T* and *U* lie on a circle, centre *O*. *HT* is a diameter and *MN* is a tangent to the circle at *T*. Angle $RTM = 61^{\circ}$.

Find

(i)	angle <i>RTH</i> ,	Answer(b)(i) Angle RTH =	[1]
(;;)	angle <i>RHT</i> ,	Answer (D)(1) Angle KIII –	[1]
(11)	angie MIII,	Answer(b)(ii) Angle RHT =	[1]
(iii)	angle <i>RST</i> ,	Answer(b)(iii) Angle RST =	[1]
(iv)	angle <i>RUT</i> .		[1]
()		Answer(b)(iv) Angle RUT =	[1]

The points A, B, C and D lie on the circumference of the circle, centre O.

Angle $ABD = 30^\circ$, angle $CAD = 50^\circ$ and angle $BOC = 86^\circ$.

(a) Give the reason why angle DBC = 50°.
Answer(a) [1]
(b) Find

(i) angle ADC,

Answer(b)(i) Angle ADC = [1]

(iii) angle OBD.

(ii) angle *BDC*,

$$Answer(b)(iii) Angle OBD = [2]$$

[1]

A, *B* and *C* are points on a circle, centre *O*. *TA* is a tangent to the circle at *A* and *OBT* is a straight line. *AC* is a diameter and angle $OTA = 24^\circ$.

Calculate

(a)	angle AOT,	Answer(a) Angle AOT =	[2]

(**b**) angle *ACB*,

Answer(b) Angle ACB = [1]

(c) angle *ABT*.

$$Answer(c) \text{ Angle } ABT =$$
[2]

6)

Module 2 Circle Theorems

(c) z.

Answer(c) z = [2]

$$Answer(d) h = [1]$$

Module 2 Circle Theorems