8. (a) METHOD 1

evidence of recognizing the amplitude is the radius e.g. amplitude is half the diameter $a = \frac{8}{2}$ A1 a = 4 AG N0 [2 marks]

METHOD 2

evidence of recognizing the maximum height (M1) e.g. h = 6, $a \sin bt + 2 = 6$

correct reasoning

e.g. $a \sin bt = 4$ and $\sin bt$ has amplitude of 1

(b) METHOD 1

METHOD 2

correct equation $e.g. \ 2 = 4\sin 30b + 2 \ , \ \sin 30b = 0$ $30b = 2\pi \qquad A1$ $b = \frac{\pi}{15} \qquad AG \qquad N0$ [2 marks]

continued ...

Modelling functions Answers

1) Question 8 continued

(c)	recognizing $h'(t) = -0.5$ (seen anywhere)	R1	
	attempting to solve $e.g.$ sketch of h' , finding h'	(M1)	
	correct work involving h'	A2	
	e.g. sketch of h' showing intersection, $-0.5 = \frac{4\pi}{15} \cos\left(\frac{\pi}{15}t\right)$ t = 10.6, $t = 19.4$	AIAI	N3 [6 marks]
(d)	METHOD 1		
	valid reasoning for their conclusion (seen anywhere) e.g. $h(t) < 0$ so underwater; $h(t) > 0$ so not underwater	R1	
	evidence of substituting into h e.g. $h(19.4)$, $4\sin\frac{19.4\pi}{15} + 2$	(M1)	
	15		
	correct calculation $e.g.$ $h(19.4) = -1.19$	AI	
	correct statement e.g. the bucket is underwater, yes	AI	N0
			[4 marks]
	METHOD 2		
	valid reasoning for their conclusion (seen anywhere) e.g. $h(t) < 0$ so underwater; $h(t) > 0$ so not underwater	R1	
	evidence of valid approach e.g. solving $h(t) = 0$, graph showing region below x-axis	(M1)	
	correct roots	A1	
	e.g. 17.5, 27.5		
	correct statement	A1	N0
	e.g. the bucket is underwater, yes		[4 marks]
		Total	[14 marks]

M11/5/MATME/SP2/ENG/TZ1/XX/M

QUESTION 10

(a)	valid approach e.g. 15 mins is half way, top of the wheel, $d + 1$	(M1)	
	height = 101 (metres)	AI	N2 [2 marks]
(b)	evidence of identifying rotation angle after 6 minutes e.g. $\frac{2\pi}{5}$, $\frac{1}{5}$ of a rotation, 72°	AI	
	evidence of appropriate approach e.g. drawing a right triangle and using cosine ratio	(M1)	
	correct working (seen anywhere) e.g. $\cos \frac{2\pi}{5} = \frac{x}{50}$, 15.4(508)	AI	
	evidence of appropriate method $e.g.$ height = radius + 1 - 15.45	<i>M1</i>	
	height = 35.5 (metres) (accept 35.6)	AI	N2 [5 marks]

continued ...

Question 10 continued

(c) METHOD 1

evidence of substituting into
$$b = \frac{2\pi}{\text{period}}$$
 (M1)

correct substitution

e.g. period = 30 minutes,
$$b = \frac{2\pi}{30}$$

$$b = 0.209 \left(\frac{\pi}{15}\right)$$
 A1 N2

substituting into
$$h(t)$$
 (M1)

e.g.
$$h(0) = 1, h(15) = 101$$

$$1 = 50\sin\left(-\frac{\pi}{15}c\right) + 51$$

$$c = 7.5 A1 N2$$

[6 marks]

METHOD 2

two correct equations

e.g.
$$1 = 50\sin b(0-c) + 51$$
, $101 = 50\sin b(15-c) + 51$

attempt to solve simultaneously (M1)

e.g. evidence of combining two equations

$$b = 0.209 \left(\frac{\pi}{15}\right), c = 7.5$$
 A1A1 N2N2

[6 marks]

(d) evidence of solving
$$h(t) = 96$$
 (M1)

e.g. equation, graph

$$t = 12.8 \text{ (minutes)}$$
A2 N3
[3 marks]

Total [16 marks]

QUESTION 3

 $h = 24 - 14\cos\left(2t + \frac{\pi}{2}\right)$

[2 marks]

(A2)

Total [10 marks]

M04/522/S(2)

QUESTION 10

Total [16 marks]

QUESTION 8

(b) (i) evidence of appropriate approach

e.g.
$$A = \frac{18-2}{2}$$

$$A=8$$
 AG NO

(ii)
$$C=10$$
 A2 N2

(iii) METHOD 1

$$period = 12 (A1)$$

evidence of using
$$B \times \text{period} = 2\pi$$
 (accept 360°) (M1)

e.g.
$$12 = \frac{2\pi}{B}$$

$$B = \frac{\pi}{6}$$
 (accept 0.524 or 30) A1 N3

METHOD 2

evidence of substituting (M1)
e.g.
$$10 = 8\cos 3B + 10$$

$$e.g. \cos 3B = 0 \left(3B = \frac{\pi}{2}\right)$$

$$B = \frac{\pi}{6}$$
 (accept 0.524 or 30) A1 N3

[6 marks]

(c) correct answers A1A1 e.g.
$$t = 3.52$$
, $t = 10.5$, between 03:31 and 10:29 (accept 10:30)

[2 marks]

Total [11 marks]

M08/5/MATME/SP2/ENG/TZ2/XX+

QUESTION 5

Note: Accept exact answers given in terms of π .

(a) Evidence of using
$$l = r\theta$$

arc AB = 7.85 (m)

(M1) A1 N2

[2 marks]

(b) Evidence of using
$$A = \frac{1}{2}r^2\theta$$

Area of sector AOB = 58.9 (m²)

(M1)

M1

A1 N2

[2 marks]

(c) METHOD 1

$$angle = \frac{\pi}{6} \quad (30^\circ) \tag{A1}$$

attempt to find $15\sin\frac{\pi}{6}$

height =
$$15 + 15\sin\frac{\pi}{6}$$

= 22.5 (m) A1 N2

METHOD 2

$$angle = \frac{\pi}{3} (60^\circ)$$
 (A1)

attempt to find $15\cos\frac{\pi}{3}$

height =
$$15 + 15\cos\frac{\pi}{3}$$

= 22.5 (m) A1 N2

[3 marks]

continued ...

Question 5 continued

(d) (i)
$$h\left(\frac{\pi}{4}\right) = 15 - 15\cos\left(\frac{\pi}{2} + \frac{\pi}{4}\right)$$
 (M1)
= 25.6 (m) A1 N2

(ii)
$$h(0) = 15 - 15\cos\left(0 + \frac{\pi}{4}\right)$$
 (M1)
= 4.39 (m) A1 N2

(iii) METHOD 1

Highest point when h = 30 $30 = 15 - 15\cos\left(2t + \frac{\pi}{4}\right)$ $\cos\left(2t + \frac{\pi}{4}\right) = -1$ (A1)

$$t = 1.18 \left(\operatorname{accept} \frac{3\pi}{8} \right)$$
 A1 N2

METHOD 2

Sketch of graph of h M2Correct maximum indicated (A1) t = 1.18 A1 N2

METHOD 3

Evidence of setting h'(t) = 0 M1

$$\sin\left(2t+\frac{\pi}{4}\right)=0\tag{A1}$$

Justification of maximum R1

e.g. reasoning from diagram, first derivative test, second derivative test

$$t = 1.18 \left(\operatorname{accept} \frac{3\pi}{8} \right)$$
 A1 N2

[8 marks]

Question 5 continued

[2 marks]

AIAIAI N3

Note: Award A1 for range -30 to 30, A1 for two zeros. Award A1 for approximate correct sinusoidal shape.

(ii) METHOD 1

Maximum on graph of h'	(M1)	
t = 0.393	A1	N2

METHOD 2

Minimum on graph of
$$h'$$
 (M1)
 $t = 1.96$ A1 N2

METHOD 3

Solving
$$h''(t) = 0$$
 (M1)
One or both correct answers A1
 $t = 0.393$, $t = 1.96$ N2

[5 marks]

Total [22 marks]

N07/5/MATME/SP2/ENG/TZ0/XX+