(a)	Find an expression for $(f \circ g)(x)$.	
(b)	Show that $f^{-1}(18) + g^{-1}(18) = 22$.	
		•
		•
		-
		•
Let f	$f(x) = \sqrt{x+4}, x \ge -4 \text{ and } g(x) = x^2, x \in X.$	 Total 6
(a)	$f(x) = \sqrt{x+4}$, $x \ge -4$ and $g(x) = x^2$, $x \in \mathbb{X}$. Find $(g \circ f)(3)$.	Total 6
(a) (b)	$F(x) = \sqrt{x+4}, x \ge -4 \text{ and } g(x) = x^2, x \in \mathbb{R}.$ $Find(g \circ f)(3).$ $Find f^{-1}(x).$	Total 6
(a)	$f(x) = \sqrt{x+4}$, $x \ge -4$ and $g(x) = x^2$, $x \in \mathbb{X}$. Find $(g \circ f)(3)$.	Total 6
(a) (b)	$F(x) = \sqrt{x+4}, x \ge -4 \text{ and } g(x) = x^2, x \in \mathbb{R}.$ $Find(g \circ f)(3).$ $Find f^{-1}(x).$	Total 6
(a) (b) (c)	$F(x) = \sqrt{x+4}, x \ge -4 \text{ and } g(x) = x^2, x \in \mathbb{R}.$ $Find(g \circ f)(3).$ $Find f^{-1}(x).$	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6
(a) (b) (c)	Find $(g \circ f)$ (3). Find $f^{-1}(x)$. Write down the domain of f^{-1} .	Total 6

3.	Let $g(x) = 3x - 2$, $h(x) =$	$\frac{5x}{x-4}$, $x =$	≠	4
----	--------------------------------	--------------------------	----------	---

(a) Find an expression for (h ∘ g) (x). Simplify your answer.
(b) Solve the equation (h ∘ g) (x) = 0.

.....

(Total 6 marks)

- 4. Let $f(x) = x^3 4$ and g(x) = 2x.
 - (a) Find $(g \circ f)$ (-2).
 - (b) Find $f^{-1}(x)$.

 5. Two functions f, g are defined as follows:

$$f: x \to 3x + 5$$
$$g: x \to 2(1 - x)$$

Find

- (a) $f^{-1}(2)$;
- (b) $(g \circ f)(-4)$.

Working:	
	Answers:
	(a)
	(b)

- 6. Consider the functions f(x) = 2x and $g(x) = \frac{1}{x-3}$, $x \ne 3$.
 - (a) Calculate $(f \circ g)$ (4).
 - (b) Find $g^{-1}(x)$.
 - (c) Write down the domain of g^{-1} .

,, O	rking:						
		Answ	ver:				
					•••••	 T(otal 6 r
	sider two different quadratic function	of the form	f(x) = 4x	$x^2 - qx +$	25. The	graph of e	each
on na	as its vertex on the x-axis.						
(a)	Find both values of q .						
(b)	For the greater value of q , solve $f(x)$	(x) = 0.					
		,					
. ,							
(c)	Find the coordinates of the point of	intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,		intersection	of the tw	o graphs			
. ,	Find the coordinates of the point of						
. ,							
. ,	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						
(c)	Find the coordinates of the point of						

10. The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k.

11. The diagram shows part of the graph of $y = a(x - h)^2 + k$. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

- (a) Write down the value of
 - (i) h;
 - (ii) k.
- (b) Calculate the value of *a*.

Working:	
	Answers:
	(a) (i)
	(ii)
	(b)

12. Let $f(x) = a(x-4)^2 + 8$.

(a) Write down the coordinates of the vertex of the curve of f.

(b) Given that f(7) = -10, find the value of a.

(c) Hence find the *y*-intercept of the curve of *f*.

(Total 6 marks)

13. The function f is given by $f(x) = x^2 - 6x + 13$, for $x \ge 3$.

(a) Write f(x) in the form $(x-a)^2 + b$.

(b) Find the inverse function f^{-1} .

(c) State the domain of f^{-1} .

Working:	
	Answers:

(a)

(Total 6 marks)

14. The diagram represents the graph of the function

$$f: x \mapsto (x-p)(x-q)$$
.

(a) Write down the values of p and q.

(b) The function has a minimum value at the point C. Find the x-coordinate of C.

Working:	
	Answers:
	(a)
	(b)

15. The following diagram shows the graph of y = f(x). It has minimum and maximum points at (0, 0) and $(1, \frac{1}{2})$.

- (a) On the same diagram, draw the graph of $y = f(x-1) + \frac{3}{2}$.
- (b) What are the coordinates of the minimum and maximum points of $y = f(x-1) + \frac{3}{2}$?

Working:	
·	
	Answer:
	(b)

16. The diagrams show how the graph of $y = x^2$ is transformed to the graph of y = f(x) in three steps.

For each diagram give the equation of the curve.

Answers:

(a)

(b)

(c)

17. The sketch shows part of the graph of y = f(x) which passes through the points A(-1, 3), B(0, 2), C(1, 0), D(2, 1) and E(3, 5).

A second function is defined by g(x) = 2f(x-1).

- (a) Calculate g(0), g(1), g(2) and g(3).
- (b) On the same axes, sketch the graph of the function g(x).

Working:	
	Answers:
	(a)
	(Total 6 mai

- **18.** Let f(x) = 2x + 1.
 - (a) On the grid below draw the graph of f(x) for $0 \le x \le 2$.
 - (b) Let g(x) = f(x+3) 2. On the grid below draw the graph of g(x) for $-3 \le x \le -1$.

Working:		

19. Let $f(x) = 3x - e^{x-2} - 4$, for $-1 \le x \le 5$.

1	(a)	Find	tha	<i>x</i> -interce	nta of	tha	aranh	of f	•
((a)	rina	me	x-muerce	pts or	me	grapn	01/	

(3)

(b) On the grid below, sketch the graph of f.

(3)

- **20.** The quadratic function f is defined by $f(x) = 3x^2 12x + 11$.
 - (a) Write f in the form $f(x) = 3(x h)^2 k$.
 - (b) The graph of f is translated 3 units in the positive x-direction and 5 units in the positive y-direction. Find the function g for the translated graph, giving your answer in the form $g(x) = 3(x-p)^2 + q$.

(Total 6 marks)

21. The following diagram shows part of the graph of f(x).

Consider the five graphs in the diagrams labelled A, B, C, D, E below.

- (a) Which diagram is the graph of f(x + 2)?
- (b) Which diagram is the graph of -f(x)?
- (c) Which diagram is the graph of f(-x)

22. Part of the graph of f(x) = (x - p)(x - q) is shown below.

The vertex is at C. The graph crosses the *y*-axis at B.

- (a) Write down the value of p and of q.
- (b) Find the coordinates of C.
- (c) Write down the *y*-coordinate of B.

Working:	
	Answers:
	(a)
	(b) (c)
	(c)
	(Total 6 marks

23.	(a)	Express $y = 2x^2 - 12x + 23$ in the form $y = 2(x - c)^2 + d$.						
	The g	The graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations						
				a vertical stretch with scale factor k followed by a horizontal translation of p units followed by a vertical translation of q units.				
	(b)	Write down the value of						
		(i)	<i>k</i> ;					
		(ii)	p;					
		(iii)	q.					

24. The following diagram shows part of the graph of a quadratic function, with equation in the form y = (x - p)(x - q), where $p, q \in X$.

- (a) Write down
 - (i) the value of p and of q;
 - (ii) the equation of the axis of symmetry of the curve.

(3)

(b) Find the equation of the function in the form $y = (x - h)^2 + k$, where $h, k \in \times$.

25. The following diagram shows part of the graph of f, where $f(x) = x^2 - x - 2$.

(a) Find both *x*-intercepts.

(b) Find the *x*-coordinate of the vertex.

(Total 6 marks)

(4)

26. Part of the graph of the function $y = d(x - m)^2 + p$ is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, 2).

- (a) Write down the value of
 - (i) m;
 - (ii) p.
- (b) Find *d*.

.....

27. Part of the graph of a function f is shown in the diagram below.

(a) On the same diagram sketch the graph of y = -f(x).

(2)

- (b) Let g(x) = f(x+3).
 - (i) Find g(-3).
 - (ii) Describe **fully** the transformation that maps the graph of f to the graph of g.

.....

.....