# Mixed Arith Geo Series 

0 min<br>0 marks

1. (a) For taking three ratios of consecutive terms
(M1)

$$
\frac{54}{18}=\frac{162}{54}=\frac{486}{162} \quad(=3)
$$

hence geometric
(b) (i) $r=3$

$$
u_{n}=18 \times 3^{n-1}
$$

(ii) For a valid attempt to solve $18 \times 3^{n-1}=1062882$
$e g$ trial and error, logs
$n=11$
(A1)
A1 N 2
(M1)

A1 N 2
[6]
2. (a) $u_{1}=7, d=2.5$ (M1)
$u_{41}=u_{1}+(n-1) d=7+(41-1) 2.5$ $=107$
(b) $\quad S_{101}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]$

$$
\begin{align*}
& =\frac{101}{2}[2(7)+(101-1) 2.5]  \tag{M1}\\
& =\frac{101(264)}{2} \\
& =13332
\end{align*}
$$

(A1) (C2)
3. $a=5$
$a+3 d=40$ (may be implied)
$d=\frac{35}{3}$
$T_{2}=5+\frac{35}{3}$
$=16 \frac{2}{3}$ or $\frac{50}{3}$ or $16.7(3 \mathrm{sf})$
(A1) (C4)
4. For using $u_{3}=u_{1} r^{2}=8$

$$
\begin{align*}
8 & =18 r^{2}  \tag{A1}\\
r^{2} & =\frac{8}{18}\left(=\frac{4}{9}\right) \\
r & = \pm \frac{2}{3}
\end{align*}
$$

$$
S_{\infty}=\frac{u_{1}}{1-r}
$$

$$
S_{\infty}=54, \frac{54}{5}(=10.8)
$$

5. (a) $a_{1}=1000, a_{n}=1000+(n-1) 250=10000$
$n=\frac{10000-1000}{250}+1=37$.

$$
\begin{equation*}
\text { She runs } 10 \mathrm{~km} \text { on the } 37 \text { th day. } \tag{A1}
\end{equation*}
$$

(b) $\quad S_{37}=\frac{37}{2}(1000+10000)$
(M1)
(A1)
[4]
6. (a) For taking an appropriate ratio of consecutive terms

A1 N2
(b) For attempting to use the formula for the $n^{\text {th }}$ term of a GP $u_{15}=1.39$
(c) For attempting to use infinite sum formula for a GP $S=1215$
7. (a) $u_{4}=u_{1}+3 d$ or $16=-2+3 d$
$d=\frac{16-(-2)}{3}$
$=6$
(b) $u_{n}=u_{1}+(n-1) 6$ or $11998=-2+(n-1) 6$
$n=\frac{11998+2}{6}+1$
$=2001$

A1 N2
[6]
(M1)
A1 N2

A
(M1)
(M1)
(A1) (C3)
(A1)
(A1) (C3)
8. (a) (i) $\quad$ Area $B=\frac{1}{16}, \quad$ area $C=\frac{1}{64}$
(ii) $\frac{\frac{1}{16}}{\frac{1}{4}}=\frac{1}{4} \quad \frac{\frac{1}{64}}{\frac{1}{16}}=\frac{1}{4}$ (Ratio is the same.)
(iii) Common ratio $=\frac{1}{4}$
(A1) 5
(b) (i) Total area $\left(S_{2}\right)=\frac{1}{4}+\frac{1}{16}=\frac{5}{16}=(=0.3125)(0.313,3 \mathrm{sf})$
(ii) Required area $=S_{8}=\frac{\frac{1}{4}\left(1-\left(\frac{1}{4}\right)^{8}\right)}{1-\frac{1}{4}}$

$$
\begin{align*}
& =0.3333282(471 \ldots)  \tag{A1}\\
& =0.333328(6 \mathrm{sf}) \tag{A1}
\end{align*}
$$

Note: Accept result of adding together eight areas correctly.
(c) $\begin{aligned} \text { Sum to infinity } & =\frac{\frac{1}{4}}{1-\frac{1}{4}} \\ & =\frac{1}{3}\end{aligned}$
(A1) 2
[11]
9. Arithmetic sequence $d=3$ (may be implied)
(M1)(A1)

$$
\begin{align*}
n & =1250 \\
S & =\frac{1250}{2}(3+3750) \quad\left(\text { or } S=\frac{1250}{2}(6+1249 \times 3)\right)  \tag{M1}\\
& =2345625
\end{align*}
$$

(A2)
(A1) (C6)

