IB Questionbank Maths SL

Mixed Arith Geo Series

0 min 0 marks

1.	(a)	For t	aking three ratios of consecutive terms	(M1)			
		$\frac{54}{18} =$	$=\frac{162}{54}=\frac{486}{162}$ (=3)	A1			
		hence geometric AG		N0			
	(b)	(i)	<i>r</i> = 3	(A1)			
			$u_n = 18 \times 3^{n-1}$	A1	N2		
		(ii)	For a valid attempt to solve $18 \times 3^{n-1} = 1062882$ eg trial and error, logs	(M1)			
			n = 11		A1	N2	[6]

2. (a)
$$u_1 = 7, d = 2.5$$
 (M1)
 $u_{41} = u_1 + (n-1)d = 7 + (41-1)2.5$
 $= 107$ (A1) (C2)

(b)
$$S_{101} = \frac{n}{2} [2u_1 + (n-1)d]$$

 $= \frac{101}{2} [2(7) + (101 - 1)2.5]$ (M1)
 $= \frac{101(264)}{2}$
 $= 13332$ (A1) (C2) [4]

3.
$$a = 5$$

 $a + 3d = 40 \text{ (may be implied)}$ (M1)
 $d = \frac{35}{3}$ (A1)
 $T_2 = 5 + \frac{35}{3}$ (A1)

$$=16\frac{2}{3} \text{ or } \frac{50}{3} \text{ or } 16.7 (3 \text{ sf})$$
 (A1) (C4)

4. For using $u_3 = u_1 r^2 = 8$ (M1)

$$8 = 18r^{2}$$
(A1)
$$r^{2} = \frac{8}{18} \left(= \frac{4}{9} \right)$$

$$r = \pm \frac{2}{3} \tag{A1}(A1)$$

$$S_{\infty} = \frac{u_1}{1-r},$$

 $S_{\infty} = 54, \frac{54}{5} (=10.8)$ (A1)(A1)(C3)(C3)

[6]

5. (a)
$$a_1 = 1000, a_n = 1000 + (n-1)250 = 10000$$
 (M1)
 $n = \frac{10000 - 1000}{250} + 1 = 37.$
She runs 10 km on the 37th day. (A1)

[4]

(b)
$$S_{37} = \frac{37}{2} (1000 + 10000)$$
 (M1)

[4]

6.	(a)	For taking an appropriate ratio of consecutive terms	(M1)		
		$r=\frac{2}{3}$	A1	N2	
	(b)	For attempting to use the formula for the n^{th} term of a GP	(M1)		

$$u_{15} = 1.39$$
 A1 N2
(c) For attempting to use infinite sum formula for a GP (M1)

$$S = 1215$$
 A1 N2

7. (a)
$$u_4 = u_1 + 3d \text{ or } 16 = -2 + 3d$$
 (M1)
 $d = \frac{16 - (-2)}{3}$ (M1)

$$= 6$$
 (A1) (C3)

(b)
$$u_n = u_1 + (n-1)6 \text{ or } 11998 = -2 + (n-1)6$$
 (M1)
 $n = \frac{11998 + 2}{6} + 1$ (A1)
 $= 2001$ (A1) (C3)

[6]

8. (a) (i) Area B =
$$\frac{1}{16}$$
, area C = $\frac{1}{64}$ (A1)(A1)

(ii)
$$\frac{\frac{1}{16}}{\frac{1}{4}} = \frac{1}{4} \quad \frac{\frac{1}{64}}{\frac{1}{16}} = \frac{1}{4}$$
 (Ratio is the same.) (M1)(R1)

(iii) Common ratio =
$$\frac{1}{4}$$
 (A1) 5

(b) (i) Total area
$$(S_2) = \frac{1}{4} + \frac{1}{16} = \frac{5}{16} = (= 0.3125) (0.313, 3 \text{ sf})$$
 (A1)

(ii) Required area =
$$S_8 = \frac{\frac{1}{4} \left(1 - \left(\frac{1}{4}\right)^8 \right)}{1 - \frac{1}{4}}$$
 (M1)

$$= 0.333328 2(471...)$$
(A1)
= $0.333328 (6 \text{ sf})$ (A1) 4

Note: Accept result of adding together eight areas correctly.

(c) Sum to infinity =
$$\frac{\frac{1}{4}}{1-\frac{1}{4}}$$
 (A1)
= $\frac{1}{3}$ (A1)

9. Arithmetic sequence
$$d = 3$$
 (may be implied)
 $n = 1250$ (A2)
 $S = \frac{1250}{2}(3 + 3750)$ (or $S = \frac{1250}{2}(6 + 1249 \times 3)$) (M1)
 $= 2 345 625$ (A1) (C6)

[11]

[6]

2