1)

(a) $\quad 4.53$ or $4.526-4.530 \ldots$
(b) $\quad 3.62$ to 3.624 ft
(c) (i) $360-2 \times 90-60$ oe
(ii) $0.649(0.6492$ to 0.6493$)$
(iii) 7.53 (7.527 or $7.528 \ldots$)
(iv) 112.9 to 113 ft
$3 \mid \mathbf{S C 2}$ for figs 453 or 4526-4530 If SC0, M1 for $\pi \times(\text { figs } 31)^{2} \times 15$
M1 for their (a) \times figs 8 oe E2 The 90's and the 60 must be clearly justified. Accept in diagram.
SC1 for 60 or two 90 's soi in correct positions oe e.g $360 \div 3$ scores 0

M1 for $\pi \times$ figs $62 \div 3$
M1 for their (ii) $\times 3$
M1 (indep) for $18 \times$ figs 31
This M is spoiled by extra lengths.
ft their (iii) $\times 15$

M1	Must see method
A1	
$1,1,1$	Any order
$1 \mathbf{f t}$	
$1 \mathbf{f t}$	$\mathbf{f t}$ their (b)(ii) $-6 \times$ ' 57.9 ' (only if positive)
$2 \mathbf{f t}$	M1 for $(14.4 \times 9.6+14.4 \times 4.8+9.6 \times 4.8) \times 2$ or their 3 lengths.

(c) (i) Height seen or implied as 6×4.8 or better $\pi \times 2.4^{2} \times$ their height 521 (520.8-521.3) www 3
(ii) 174 or $173(173.2-174.1) \mathrm{ft}$
(iii) 470-471 cao www 3

Indep
ft their (c)(i) $-6 \times$ ' 57.9 ' only if positive
M1 for $2 \times \pi \times 2.4^{2}$ (36.17 to 36.2), and
M1 indep for $\pi \times 4.8 \times$ their height from (c)(i)

Mensuration P4 Answers

3)

(a)
(b)

180
(c) (i) 23640 (allow 23 600)
(ii)
23.64 (or 23.6) ft
(d) (i)

216
8.64
(e)
75.3 (75.26 to 75.33...)
(f)
0.842 (0.8419-0.8421)

M1 Allow drawing for M1 but must see reaching 16 for E2
Reaching 16 without any errors or omissions
SC1 for $\frac{40 \times 12 \times 6}{\text { their (b) }}$ even if $=16$ or $4 \times 2 \times 2=16$ or $4 \times 4 \times 1=16$ without other working

M1 for their $180 \times 8 \times 16+600$
ft their (i) $\div 1000$

M1 for $(10 \times 6+10 \times 3+6 \times 3) \times 2$ oe
M1 for their (i) $\times 16 \times 25$
M1 (indep) for $\div 100^{2}$
Figs 864 imply M1 only

M1 for $\frac{4}{3} \pi \times 0.5^{3}$ (0.5235..) Implied also by 104.7....
then M1 (dep) for their (b) $-200 \times$ their $\frac{4}{3} \pi \times 0.5^{3}$ must be giving positive answer

M1 for $\left(\frac{4}{3} \pi r^{3}\right)=50 \div 20$
then M1 for $\frac{50 \div 20}{\frac{4}{3} \pi}$ (0.5966 to 0.5972)
After 0 scored SC1 for $\sqrt[3]{\frac{50}{\frac{4}{3} \pi}}$ (implied by 2.29)
4)

| (a) | $87.5(87.45$ to 87.52$) \quad$ www 4 |
| :--- | :--- | :--- | :--- |
| (b) | $107.9 \ldots .$. to $108.0 \ldots .$. www3 |
| (c) | (i) $2.29(2.291$ to 2.293$) \quad$ www 2 |
| (d) $14.8(14.82$ to 14.83$)$ cao www 3 | |
| 70.9 to 71.5 cao | |
| (ii) 3 | |

5)

(a) $\begin{aligned} & \text { (i) } 141(141.3 \text { to } 141.4) \\ & \text { (ii) } 8.93(8.93 \ldots) \\ & \text { (b) (i) } 2.98 \text { or } 2.976 \text { to } 2.977 \\ & \text { (ii) Answer rounds to } 15.7 \\ & \text { (c) } 535 \text { or } 536(534.9 \text { to } 535.8)\end{aligned} \$$ (
(a) $\begin{aligned} & \text { (i) } 141(141.3 \text { to } 141.4) \\ & \text { (ii) } 8.93(8.93 \ldots) \\ & \text { (b) (i) } 2.98 \text { or } 2.976 \text { to } 2.977 \\ & \text { (ii) Answer rounds to } 15.7 \\ & \text { (c) } 535 \text { or } 536(534.9 \text { to } 535.8)\end{aligned} \$$ (
(a) $\begin{aligned} & \text { (i) } 141(141.3 \text { to } 141.4) \\ & \text { (ii) } 8.93(8.93 \ldots) \\ & \text { (b) (i) } 2.98 \text { or } 2.976 \text { to } 2.977 \\ & \text { (ii) Answer rounds to } 15.7 \\ & \text { (c) } 535 \text { or } 536(534.9 \text { to } 535.8)\end{aligned} \$$ (
(a) $\begin{aligned} & \text { (i) } 141(141.3 \text { to } 141.4) \\ & \text { (ii) } 8.93(8.93 \ldots) \\ & \text { (b) (i) } 2.98 \text { or } 2.976 \text { to } 2.977 \\ & \text { (ii) Answer rounds to } 15.7 \\ & \text { (c) } 535 \text { or } 536(534.9 \text { to } 535.8)\end{aligned} \$$ (
(a) $\begin{aligned} & \text { (i) } 141(141.3 \text { to } 141.4) \\ & \text { (ii) } 8.93(8.93 \ldots) \\ & \text { (b) (i) } 2.98 \text { or } 2.976 \text { to } 2.977 \\ & \text { (ii) Answer rounds to } 15.7 \\ & \text { (c) } 535 \text { or } 536(534.9 \text { to } 535.8)\end{aligned} \$$ (

M1 for $1 / 2 \times 2.5 \times 9.5$ soi by 11.875 or 71.25 and M2 for $1 / 2 \times 2.5^{2} \times \sin 60 \times 6$ oe $(16.23$ to 16.24)
or M1 for $1 / 2 \times 2.5^{2} \times \sin 60(2.706 .$. or 1 trapezium (8.1189..)

M2 for $\frac{\pi}{3}$ (their $2.29^{2} \times$ their $14.8-$ their 1.145^{2} \times their 7.4$) \quad($ not 15 or 7.5$)$
or $\frac{7}{8} \times \frac{\pi}{3} \times$ their $2.29^{2} \times$ their 14.8 or M1 for $1 / 8$ oe e.g. $\frac{7.5^{3}}{15^{3}}$ or $7 / 8$ or $(1 / 2$ their R and $1 / 2$ their h) seen
ft their (a)(i) $\div 9$ correct to 3 sf or better or $\pi \times 1.5 \times \sqrt{\text { their } 2.98^{2}+1.5^{2}}$
M1 for their (a)(i) $\div 9$ or $\pi \times 1.5 \times 10 \div 3$ oe or $\pi \times 1.5 \times \sqrt{\text { their } 2.98^{2}+1.5^{2}}$

M1 for area of one circle $\pi \times 1.5^{2}$ or $\pi \times 4.5^{2}$ (7.0685 or 63.617)
and M1 for their (a)(i) - their (b)(ii)
(large cone SA - small cone SA)
$(141-15.7) \quad(=125.3$ to 125.7$)$ and M1 for $12 \times \pi \times 9$ (curved area of cylinder)
(339.292..)
and M1 for correct collection of 4 areas
6)
(a) (i) $2.7 \times \frac{20}{12}$ oe $=4.5$
(ii) $1 / 3 \pi \times 4.5^{2} \times 20-1 / 3 \pi \times 2.7^{2} \times 12$ or $\left(1-(3 / 5)^{3}\right) \times 1 / 3 \pi \times 4.5^{2} \times 20$ oe 332.3 to 332.6 or 332 or 333
(b) (i) $8^{2}+(4.5-2.7)^{2}$ oe
sq root

8.2

(ii) 185 or 186 or 185.5 or 185.45 to 185.51

E2 M1 for $(\mathrm{SF}=$) 20/12 or 12/20 (but not from 2.7/4.5 or 4.5/2.7)

M1 for $1 / 3 \pi \times 4.5^{2} \times 20(424 \ldots$ or $135 \pi)$ and M1 for $1 / 3 \pi \times 2.7^{2} \times 12$ (91.6..or 29.16π)
e.g. Alt: $20^{2}+4.5^{2}$ and $12^{2}+2.7^{2}$

M1 Dep on 1st M1 Alt: 20.5-12.3 Other complete correct methods are M2
E1 No errors seen

M4 for $\pi \times 4.5 \times 20.5-\pi \times 2.7 \times 12.3$ or other complete correct method or M3 for $\pi \times 4.5 \times 20.5$ or $\pi \times 2.7 \times 12.3$ (290 or 92.25π) (104.3 ...or 33.21π) or $\mathbf{B 2}$ for (slant height of large cone $=$) 20.5 or (slant height of removed cone $=$) 12.3
or M1 for $\sqrt{4.5^{2}+20^{2}}$ or $\sqrt{2.7^{2}+12^{2}}$ or $12 / 8 \times 8.2$ oe or $20 / 8 \times 8.2$ oe

(a)	$\begin{aligned} & 250 x^{2}=4840 \quad \text { o.e. } \\ & x^{2}=19.36 \text { or }(x=) \sqrt{4840 \div 250}(=4.4) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Allow M1 for $250 \times 4.4^{2}=4840$ Then E1 for $250 \times 19.36=4840$
(b)	42.6 (kg) cao (42.592 or 42.59)	B2	SC1 for figures 426 or 4259...
(c)	26.4 (cm) c.a.o.	B2	If $\mathbf{B 0}, \mathbf{M 1}$ for any of following $88 \div 4.4=20$ and $120 \div 20=6$ (accept 6 bars high o.e.) or $88 h=4.4^{2} \times 120$ or $250 \times 88 \times h=120 \times 4840$
(d) (i)	$4840 \div 4200$ (implied by $1.15(2)$) $\div 4 / 3 \pi$ (implied by 0.274 to 0.276) $\sqrt[3]{ }$ (seen or implied by correct answer to more than 2 dp) 0.649-0.651	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { dep } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 4200 \times 4 / 3 \pi r^{3}=4840 \\ & \left(r^{3}=\right) 4840 \div(4200 \times 4 / 3 \pi) \end{aligned}$ $\sqrt[3]{ }$ Third M dependent on M1M1 Must be 3dp or better
(ii)	$5.31(5.306-5.31)\left(\mathrm{cm}^{2}\right)$	B1	
(iii)	$\frac{4200 \times \text { their (ii) }}{2 \times 4.4^{2}+4 \times 4.4 \times 250} \times 100$	M3	If M0, M1 for $4200 \times$ their (ii) (22299) and M1 (independent) for correct method for surface area of solid cuboid (4438.72)
	501.9 - 503 (\%) c.a.o. www4	A1	

