Matrices 1 IGCSE

1)

(a) \mathbf{A} is a (2×4) matrix, \mathbf{B} is a (3×2) matrix and \mathbf{C} is a (1×3) matrix.

Which two of the following matrix products is it possible to work out?
\mathbf{A}^{2}
B 2
\mathbf{C}^{2}
AB AC
BA BC
CA
CB
and
(b) Find the inverse of $\left(\begin{array}{cc}\frac{1}{2} & \frac{3}{4} \\ \frac{1}{8} & \frac{1}{4}\end{array}\right)$.

Simplify your answer as far as possible.

[3]
(c) Explain why the matrix $\left(\begin{array}{ll}4 & 2 \\ 6 & 3\end{array}\right)$ does not have an inverse.

Matrices 1 IGCSE

2)

$$
\mathbf{M}=\left(\begin{array}{rr}
6 & -3 \\
4 & 5
\end{array}\right)\binom{x}{1} .
$$

(a) Find the matrix \mathbf{M}.
(b) Simplify $\left(\begin{array}{ll}x & 1\end{array}\right) \mathbf{M}$.

> Answer(b)
3)

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 4
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{rr}
3 & -1 \\
-2 & 2
\end{array}\right)
$$

Find
(a) AB ,
(b) the inverse matrix \mathbf{B}^{-1},

$$
\text { Answer(b) } \mathbf{B}^{-1}=
$$

(c) $\mathbf{B B}^{-1}$.
4)
(a)

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 3
\end{array}\right) \quad \mathbf{B}=\binom{6}{-4}
$$

(i) Work out $\mathbf{A B}$.
(ii) Work out BA.
(b) $\mathbf{C}=\left(\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right)$

Find \mathbf{C}^{-1}, the inverse of \mathbf{C}.

Matrices 1 IGCSE

5)

$$
\mathbf{M}=\left(\begin{array}{rr}
5 & 2 \\
-3 & 4
\end{array}\right) \quad \mathbf{N}=\left(\begin{array}{rr}
-1 & -2 \\
2 & 6
\end{array}\right)
$$

Calculate
(a) MN ,
(b) \mathbf{M}^{-1}, the inverse of \mathbf{M}.
6)

Find the values of x for which
(a) $\left(\begin{array}{cc}1 & 0 \\ 0 & 2 x-7\end{array}\right)$ has no inverse,

Answer(a) $x=$

(b) $\left(\begin{array}{cc}1 & 0 \\ 0 & x^{2}-8\end{array}\right)$ is the identity matrix,

$$
\text { Answer (b) } x=\quad \text { or } x=
$$

(c) $\left(\begin{array}{cc}1 & 0 \\ 0 & x-2\end{array}\right)$ represents a stretch with factor 3 and the x axis invariant.
7)

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

(a) Calculate $\mathbf{B A}$.
(b) Find \mathbf{A}^{-1}, the inverse of \mathbf{A}.
8)

$$
\mathbf{A}=\left(\begin{array}{rr}
2 & 2 \\
2 & -2
\end{array}\right)
$$

Work out
(a) \mathbf{A}^{2},
(b) \mathbf{A}^{-1}, the inverse of \mathbf{A}.

