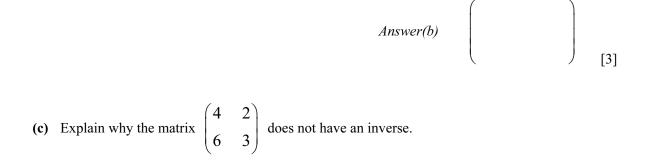

Matrices 1 IGCSE

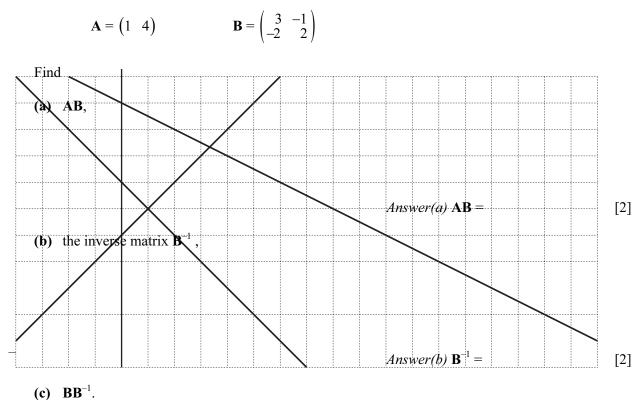

(a) A is a (2×4) matrix, B is a (3×2) matrix and C is a (1×3) matrix.

Which two of the following matrix products is it possible to work out?

\mathbf{A}^2	\mathbf{B}^2	\mathbf{C}^2	AB	AC	BA	BC	CA	СВ

Simplify your answer as far as possible.

Answer(c)


1)

$$\mathbf{M} = \begin{pmatrix} 6 & -3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}.$$

(a) Find the matrix M.

$$Answer(a) \mathbf{M} = [2]$$

(b) Simplify (x = 1) M.

Answer(b)

Answer(c) $\mathbf{BB}^{-1} =$ [1]

2)

3)

[2]

4)

(a)

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \end{pmatrix} \qquad \qquad \mathbf{B} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

	Answer(a)(i)	[2]
Work out BA .		

Answer(a)(ii)

[2]

 $(b) \quad \mathbf{C} = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$

(ii)

Find \mathbf{C}^{-1} , the inverse of \mathbf{C} .

Answer(b)

[2]

$$\mathbf{M} = \begin{pmatrix} 5 & 2 \\ -3 & 4 \end{pmatrix} \qquad \qquad \mathbf{N} = \begin{pmatrix} -1 & -2 \\ 2 & 6 \end{pmatrix}$$

Calculate

(a) MN,

 $Answer(a) \mathbf{MN} = [2]$

(b) \mathbf{M}^{-1} , the inverse of \mathbf{M} .

 $Answer(b) \mathbf{M}^{-1} = [2]$

5)

Find the values of *x* for which

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 2x-7 \end{pmatrix}$$
 has no inverse,

Answer(a) x = [2]

(b)
$$\begin{pmatrix} 1 & 0 \\ 0 & x^2 - 8 \end{pmatrix}$$
 is the identity matrix,

Answer (b)
$$x =$$
 or $x =$ [3]

(c)
$$\begin{pmatrix} 1 & 0 \\ 0 & x - 2 \end{pmatrix}$$
 represents a stretch with factor 3 and the x axis invariant.

Answer (c)
$$x =$$
 [2]

 $\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & -2 \end{pmatrix}$

7)
$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 2 \end{pmatrix}$$

(a) Calculate BA.

Answer(a) [2]

(b) Find \mathbf{A}^{-1} , the inverse of \mathbf{A} .

Answer(b) [2]

8)

Work out

(a) A^2 ,

(b) A^{-1} , the inverse of A.