

Mathematics SL formula booklet

For use during the course and in the examinations

First examinations 2014

Edited in 2015 (version 2)

Contents

Prior learning	
Topics	3
Topic 1—Algebra	3
Topic 2—Functions and equations	4
Topic 3—Circular functions and trigonometry	4
Topic 4—Vectors	5
Topic 5—Statistics and probability	5
Topic 6—Calculus	6

Formulae

Prior learning

Area	of a	parallelogram
------	------	---------------

Distance between two points
$$(x_{\rm l},y_{\rm l},z_{\rm l})$$
 and $(x_{\rm 2},y_{\rm 2},z_{\rm 2})$

Coordinates of the midpoint of a line segment with endpoints
$$(x_1,y_1,z_1)$$
 and (x_2,y_2,z_2)

$$A = b \times h$$

$$A = \frac{1}{2}(b \times h)$$

$$A = \frac{1}{2}(a+b)h$$

$$A = \pi r^2$$

$$C = 2\pi r$$

$$V = \frac{1}{3}$$
 (area of base × vertical height)

$$V = l \times w \times h$$

$$V = \pi r^2 h$$

$$A = 2\pi rh$$

$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{1}{3}\pi r^2 h$$

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

Topics

Topic I—Algebra

The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d) = \frac{n}{2} (u_1 + u_n)$
The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
The sum of an infinite geometric sequence	$S_{\infty} = \frac{u_1}{1-r}, \mid r \mid < 1$
Exponents and logarithms	$a^x = b \iff x = \log_a b$
Laws of logarithms	$\log_c a + \log_c b = \log_c ab$
	$\log_c a - \log_c b = \log_c \frac{a}{b}$
	$\log_c a^r = r \log_c a$
Change of base	$\log_b a = \frac{\log_c a}{\log_c b}$
Binomial coefficient	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$
Binomial theorem	$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$
	The sum of <i>n</i> terms of an arithmetic sequence The <i>n</i> th term of a geometric sequence The sum of <i>n</i> terms of a finite geometric sequence The sum of an infinite geometric sequence Exponents and logarithms Laws of logarithms Change of base Binomial coefficient

Topic 2—Functions and equations

2.4	Axis of symmetry of graph of a quadratic function	$f(x) = ax^2 + bx + c \implies \text{axis of symmetry } x = -\frac{b}{2a}$
2.6	Relationships between logarithmic and exponential functions	$a^{x} = e^{x \ln a}$ $\log_{a} a^{x} = x = a^{\log_{a} x}$
2.7	Solutions of a quadratic equation	$ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a \neq 0$
	Discriminant	$\Delta = b^2 - 4ac$

Topic 3—Circular functions and trigonometry

3.1	Length of an arc	$l = \theta r$
	Area of a sector	$A = \frac{1}{2}\theta r^2$
3.2	Trigonometric identity	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
3.3	Pythagorean identity	$\cos^2\theta + \sin^2\theta = 1$
	Double angle formulae	$\sin 2\theta = 2\sin\theta\cos\theta$
		$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$
3.6	Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab\cos C$; $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
	Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	Area of a triangle	$A = \frac{1}{2}ab\sin C$

Topic 4—Vectors

4.1	Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$
4.2	Scalar product	$v \cdot w = v w \cos \theta$
		$\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$
	Angle between two vectors	$\cos \theta = \frac{v \cdot w}{ v w }$
4.3	Vector equation of a line	r = a + tb

Topic 5—Statistics and probability

5.2	Mean of a set of data	$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$
5.5	Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$
	Complementary events	P(A) + P(A') = 1
5.6	Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
	Conditional probability	$P(A \cap B) = P(A) P(B \mid A)$
	Independent events	$P(A \cap B) = P(A) P(B)$
5.7	Expected value of a discrete random variable \boldsymbol{X}	$E(X) = \mu = \sum_{x} x P(X = x)$
5.8	Binomial distribution	$X \sim B(n, p) \implies P(X = r) = \binom{n}{r} p^r (1-p)^{n-r}, r = 0, 1,, n$
	Mean	E(X) = np
	Variance	Var(X) = np(1-p)
5.9	Standardized normal variable	$z = \frac{x - \mu}{\sigma}$

Topic 6—Calculus

6.1	Derivative of $f(x)$	$y = f(x)$ \Rightarrow $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$
6.2	Derivative of x^n	$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$
	Derivative of $\sin x$	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of $\cos x$	$f(x) = \cos x \implies f'(x) = -\sin x$
	Derivative of tan x	$f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u), u = f(x) \implies \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	Product rule	$y = uv \implies \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
6.4	Standard integrals	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
		$\int \frac{1}{x} \mathrm{d}x = \ln x + C, \ x > 0$
		$\int \sin x \mathrm{d}x = -\cos x + C$
		$\int \cos x \mathrm{d}x = \sin x + C$
		$\int e^x dx = e^x + C$
6.5	Area under a curve between $x = a$ and $x = b$	$A = \int_{a}^{b} y \mathrm{d}x$
	Volume of revolution about the <i>x</i> -axis from $x = a$ to $x = b$	$V = \int_{a}^{b} \pi y^{2} \mathrm{d}x$
6.6	Total distance travelled from t_1 to t_2	distance = $\int_{t_1}^{t_2} v(t) dt$